PROGRAMMA CONSUNTIVO A.A. 2018-19 del corso di Fisica II per Ingegneria clinica (A.Sciubba)

ELETTROSTATICA NEL VUOTO

Azioni elettriche. Carica elettrica. Legge di Coulomb.

Campo elettrico.

Sistemi di cariche discreti e continui.

Teorema di Gauss.

Prima equazione di Maxwell.

Potenziale elettrico.

Dipolo elettrico. Forze su dipolo in campo elettrico.

CONDUTTORI CARICHI NEL VUOTO

Distribuzione della carica nei conduttori.

Teorema di Coulomb.

Capacità elettrica e condensatori. Sistemi di condensatori.

Energia elettrostatica.

Equazioni di Laplace e Poisson.

ELETTROSTATICA IN PRESENZA DI DIELETTRICI

Costante dielettrica. Interpretazione microscopica.

Vettore polarizzazione elettrica **P**. Distribuzioni di carica di polarizzazione.

Vettore spostamento elettrico **D**.

Equazioni dell'elettrostatica in presenza di dielettrici.

Condizioni al contorno per i vettori **E** e **D**.

Energia elettrostatica in presenza di dielettrici.

Forze su dielettrici in campo elettrico.

CORRENTE ELETTRICA STAZIONARIA

Corrente elettrica nei conduttori.

Densità di corrente.

Equazione di continuità.

Leggi di Ohm.

Resistenza elettrica.

Effetto Joule.

Forza elettromotrice e generatori.

Leggi di Kirchhoff.

Circuiti in corrente continua.

Circuiti con R e C percorsi da corrente stazionaria.

MAGNETOSTATICA NEL VUOTO

Azioni magnetiche. Forza di Lorentz.

Campo di induzione magnetica B.

Forze su circuiti percorsi da corrente in campo magnetico.

Campo B generato da correnti stazionarie.

Seconda equazione di Maxwell.

Legge di Ampère.

Effetto Hall.

MAGNETOSTATICA IN PRESENZA DI MATERIA

Campo di magnetizzazione **M**. Distribuzioni delle correnti di magnetizzazione.

Campo magnetico H.

Equazioni della magnetostatica in presenza di materia.

Condizioni di raccordo per i campi B e H.

Mezzi dia, para- e ferro-magnetici: proprietà macroscopiche ed elementi essenziali delle caratteristiche microscopiche.

Cenni sui magneti permanenti.

CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO

Fenomeni di induzione elettromagnetica.

Legge di Faraday.

Terza equazione di Maxwell.

Auto e mutua induzione. Cenni al principio di funzionamento del trasformatore.

Legge di Felici.

Correnti quasi stazionarie in circuiti soggetti ad auto e mutua induzione.

Energia magnetica.

Corrente di spostamento.

Quarta equazione di Maxwell.

CORRENTI LENTAMENTE VARIABILI

Circuiti con R e C percorsi da corrente quasi stazionaria; considerazioni energetiche.

Circuiti con R e L percorsi da corrente quasi stazionaria; considerazioni energetiche.

Circuito LC; considerazioni energetiche.

ONDE ELETTROMAGNETICHE ·

Equazioni di Maxwell e le onde elettromagnetiche.

Proprietà generali delle onde e.m. piane.

Polarizzazione. Legge di Malus.

Spettro delle onde elettromagnetiche.

Vettore di Poynting e intensità dell'onda.

Intensità trasmessa e riflessa per incidenza ortogonale.

Principio di Huygens.

Interferenza.

Leggi della riflessione e rifrazione.

Angolo limite.

Dispersione cromatica.

Ottica geometrica: specchi piani, rifrazione in corpi con superfici piane (prisma, lamina trasparente).

Alcune domande per guidare la preparazione dell'esame:

- relazioni fra densità di carica, campo e potenziale elettrostatico
- campo elettrico e potenziale elettrostatico da distribuzioni di cariche puntiformi e non
- teorema di Gauss
- campo elettrostatico in un conduttore e in un punto vicino alla sua superficie
- dipolo elettrico e potenziale a distanza. Momento elettrico di dipolo di un sistema di cariche
- campo elettrico nel vuoto e nella materia
- rigidità dielettrica
- il condensatore
- condensatore sferico, cilindrico e piano
- definizione dei vettori E, P, D
- forza elettromotrice
- equazione di continuità della carica elettrica
- leggi di Ohm
- leggi di Kirchhoff nei circuiti.
- effetto Joule in una resistenza. Potenza elettrica
- adattamento della potenza di un carico resistivo
- considerazioni energetiche nella carica e scarica di un condensatore
- inserzione di una lastra dielettrica in un condensatore piano
- forza di Lorentz. Moto di cariche elettriche libere in campo magnetico
- seconda formula di Laplace (forza su conduttore)
- prima formula di Laplace per il calcolo di B
- campo magnetico generato da un filo, sull'asse di una spira e in un solenoide
- effetto Hall
- teorema di equivalenza di Ampère
- azioni meccaniche dei campi sui dipoli
- equazioni di Maxwell nella materia
- suscettività elettrica e magnetica
- densità di polarizzazione e di magnetizzazione
- definizione dei vettori B, M, H
- diamagnetismo, paramagnetismo e ferromagnetismo
- ciclo di isteresi
- magneti permanenti
- variazioni del flusso del campo magnetico
- legge di Faraday-Neumann-Lenz in forma integrale e differenziale
- da Faraday-Neumann-Lenz alla legge di Felici
- circuitazione del campo magnetico in condizioni stazionarie e non
- autoinduzione
- energia potenziale in un condensatore piano e in un solenoide
- resistenze, induttanze e capacità in serie e parallelo
- extracorrente di apertura e chiusura
- costante di tempo di circuiti RC e RL
- circuito LC

- mutua induzione. Coefficienti di mutua induzione fra circuiti
- corrente di spostamento
- equazioni di Maxwell nella materia.
- condizioni di raccordo dei campi **E** e **D**, **B** e **H** nel passaggio fra due materiali omogenei
- equazioni di Maxwell nel vuoto senza sorgenti. Equazione di d'Alembert
- caratteristiche delle onde e.m.
- spettro delle onde elettromagnetiche
- vettore di Poynting
- intensità trasmessa e riflessa per incidenza ortogonale
- riflessione e rifrazione della luce
- angolo limite e riflessione totale
- dispersione della luce in un prisma
- polarizzazione della luce. Legge di Malus.
- interferenza di onde e.m. Dispositivo di Young

La **prova scritta** consisterà in quattro esercizi da svolgere in 2,5 ore.

Di norma gli esercizi tratteranno:

- calcolo di un campo/potenziale
- effetti nella materia/moto di particelle cariche
- circuito elettrico
- induzione elettromagnetica, onde e ottica

Requisito fondamentale per il superamento dell'esame orale: deduzione, uso e conseguenze delle equazioni di Maxwell in forma integrale e differenziale, nel vuoto e nella materia, con sorgenti e non, in condizioni stazionarie e non.