- **1.** Costruire il diagramma della funzione: $y = x^2 + 3|x 1|$. Scrivere le equazioni della tangente nel punto di ascissa x = -1 e delle semirette tangenti nel punto di ascissa x = 1.
- 2. Sia data la funzione: $y = |4 x^2| + 3x$. Tracciarne il grafico e scrivere l'equazione della retta tangente alla curva nel punto di ascissa x = 0 e ne punto di ascissa x = -4. Si determinino le equazioni delle semirette tangenti alla curva data nei punti di ascissa $x = \pm 2$.
- 3. Provare che la retta normale alla parabola: $y = ax^2$, in un suo punto $P(\alpha, \beta)$, ha equazione:

$$(x - \alpha) + 2a\alpha(y - \beta) = 0.$$

Determinare l'equazione della normale nel caso che $a = \frac{1}{2}$ e P(2, 2).

- **4.** a) Scrivere l'equazione della parabola che passa per l'origine e di vertice $V\left(2, \frac{8}{3}\right)$ e costruirne il diagramma.
 - b) Inscrivere nella parte finita di piano delimitata dalla parabola trovata e dall'asse delle x un rettangola avente un lato sull'asse x e di perimetro 8.
 - c) Scrivere l'equazione della circonferenza circoscritta a detto rettangolo e calcolare l'area dei due sementi circolari in cui essa è divisa dall'asse delle x.
- 5. Fra le parabole di equazione: $y = ax^2 3x + 2$ determinare quella che nel punto R di ascissa x = 1 per tangente la retta di coefficiente angolare m = 1. Determinare, poi, l'equazione della retta tangente nel punto Q(0, 2) alla parabola. Determinare, infine, un punto P appartenente alla parabola equidistate da R e da Q. Si troveranno due punti P_1 e P_2 ; calcolare l'area dei due triangoli RQP_1 e RQP_2 .

2° Gruppo.

- **1.** Rappresentare graficamente la funzione: $y = -\frac{1}{2}x^2 + |x|$.

 Determinare le tangenti alla curva nel punto O(0, 0), provando che tali tangenti sono perpendicolari.
- **2.** Siano date le infinite parabole: $y = mx^2 2(m+1)x + m + 2$, dipendenti dal parametro $m \in \mathbb{R}$.
 - a) Costruire le parabole che corrispondono ai valori m = -1, m = 1 del parametro.
 - b) Mostrare che tutte le parabole passano per uno stesso punto P e che hanno ivi la stessa tangente.
 - c) Mostrare che le parabole che corrispondono a valori contrari del parametro sono simmetriche rispeto a *P*.
- 3. Data la parabola \mathcal{P} , di equazione: $y = x^2 2x$, dopo aver provato che il punto $P\left(1, -\frac{5}{4}\right)$ è un punto della direttrice della \mathcal{P} , determinare le equazioni delle rette tangenti alla \mathcal{P} condotte da P, mostrando che esse sono perpendicolari. Determinare inoltre le coordinate dei punti A e B di contatto delle suddette tangenti con la P. Determinare, infine, il punto Q dell'asse della P, in modo che l'area del triangolo ABQ sia $\frac{11}{8}$.
- **4.** Data la parabola di equazione: $y = x^2 6x + 8$, determinare:
 - a) i punti A e B (A precede B) di intersezione con l'asse x e il punto C di intersezione con l'asse y
 - b) la tangente t in A e la sua intersezione T con l'asse y, facendo osservare nello stesso tempo che la parallela alla retta per B e C;
 - c) le coordinate di un punto P dell'arco AC della curva in modo che sia k (k > 0) l'area del quadrilate di vertici POMR, essendo M ed R i punti medi rispettivamente di OA e OT;