CORSO DI LAUREA IN ING. INFORMAZIONE CORSO DI LAUREA IN ING. CIVILE E INDUSTRIALE SEDE DIDATTICA DI LATINA - a.a. 2017/2018

prova scritta di ANALISI MATEMATICA 1 - 11 gennaio 2018

COMPITO A

COGNOME NOME	2 matricola	
corso di laurea IN ING	TEORIA ORALE O SCRITTA?	
DATE DISPONIBILI PER LA TEORIA		
DATE NON DISPONIBILI PER L	A TEORIA	

GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI

1) (6 punti)

Verificare se e dove siano rispettate le ipotesi di esistenza e unicità della soluzione del seguente Problema di Cauchy:

$$\begin{cases} \sin x \cdot y''(x) - \cos x \cdot y' = 0 \\ y\left(\frac{\pi}{2}\right) = 1 \\ y'\left(\frac{\pi}{2}\right) = 0. \end{cases}$$

e in seguito determinare la soluzione.

2) (6,5 punti) Calcolare

$$\lim_{x\to 0} \frac{x(\sin x + \sinh x) + 2(\cos x - \cosh x)}{\tan(x^6)} .$$

3) (6 punti)

Risolvere l'equazione

$$\frac{2z^2 - 2(1 - i\sqrt{3})z - 1 - i\sqrt{3}}{2z - 1 + i\sqrt{3}} = 0 \qquad , \qquad z \in \mathbf{C}.$$

4) (5 punti)

Studiare il carattere della serie

$$\sum_{n=2}^{+\infty} (-1)^n \frac{\arctan(n^3)}{n^3 - 3n^2 + 3n - 1} \ .$$

5) (11,5 punti)

Determinare l'insieme di definizione, il segno, eventuali asintoti, l'insieme di derivabilità, gli eventuali massimi e minimi, relativi e assoluti della funzione

$$f(x) = \sqrt{\frac{2 - |x|}{1 - |x|}} \ .$$

FAC.: studiare il grafico della funzione, in ipotesi di numero minimo di flessi.

CORSO DI LAUREA IN ING. INFORMAZIONE CORSO DI LAUREA IN ING. CIVILE E INDUSTRIALE SEDE DIDATTICA DI LATINA - a.a. 2017/2018

prova scritta di ANALISI MATEMATICA 1 - 11 gennaio 2018

COMPITO B

${f COGNOME}$ NOME	matricola	
corso di laurea IN ING	. TEORIA ORALE O SCRITTA?	
DATE DISPONIBILI PER LA TEORIA		
DATE NON DISPONIBILI PER LA T	FEORIA	

GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI

1) (6 punti)

Risolvere l'equazione

$$\frac{2z^2 + 2(1 - i\sqrt{3})z - 1 - i\sqrt{3}}{2z + 1 - i\sqrt{3}} = 0 \qquad , \qquad z \in \mathbf{C}.$$

2) (5 punti)

Studiare il carattere della serie

$$\sum_{n=2}^{+\infty} (-1)^n \frac{\sin(n^3)}{n^3 + 6n^2 + 12n + 8} \ .$$

3) (11,5 punti)

Determinare l'insieme di definizione, il segno, eventuali asintoti, l'insieme di derivabilità, gli eventuali massimi e minimi, relativi e assoluti della funzione

$$f(x) = \sqrt{\frac{1 - |x|}{2 - |x|}} \ .$$

FAC.: studiare il grafico della funzione, in ipotesi di numero minimo di flessi.

4) (6 punti)

Verificare se e dove siano rispettate le ipotesi di esistenza e unicità della soluzione del seguente Problema di Cauchy:

$$\begin{cases}
\cos x \cdot y''(x) - \sin x \cdot y' = 0 \\
y(0) = 1 \\
y'(0) = 0.
\end{cases}$$

e in seguito determinare la soluzione.

5) (6,5 punti) Calcolare

$$\lim_{x \to 0} \frac{\log(1 - 2x^2) + \cosh(2x) - 1}{\cosh(x^2) - \cos(x^2)} \ .$$