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Introduction

The aim of this dissertation is to study the effects of the presence of obstacles in the

dynamics of some particle–based models. The interest is due to the existence of non–

trivial phenomena observed in systems modeling different contexts, from biological

scenarios to pedestrian dynamics. Indeed, obstacles can interfere with the motion

of particles producing opposite effects, both “slowing down” and “speeding up” the

dynamics , depending on the one hand on the model and on the other hand depending

on some features of the obstacles, such as position, size, shape. In many different

context it is required to pay great attention to this matter.

Particle–based models are of interest in the study of different realistic situations,

from traffic flow, pedestrian dynamics, and granular flows, to ions or neutrons dy-

namics, colloids diffusion, biological and chemical models. There exist cases in which

some features of the model are well understood. Let us think for instance to particles

undergoing a Brownian motion. In this case it is well known how particles diffuse.

Indeed, the mean square distance traveled by particles is proportional to time, and

this is called classical Fickian diffusion. The classical diffusion has been the paradigm

in numerous applications ranging from polymeric solutions, emulsions, colloidal sus-

pension to several biological systems.

Nevertheless, is it possible to see a different unexpected behavior, for instance

in experimental data? Can the environment influence significantly the dynamics?

It is observed in many experimental measures that the mean square displacement of

biomolecules scales as a power law with exponent smaller than one. This phenomenon,

called anomalous diffusion, is largely present in nature, for instance in crowded bio-

logical media, polymeric networks, and porous materials. The common observation

in this phenomena seems to be that the environment is densely packed. For instance

it happens in cells, where different macromolecules such as proteins, lipids and sugars

present in cellular cytosol can occupy from 5 to 40% of the total cellular volume [24].

This so–called called macromolecular crowding is believed to be the reason of the

observed slowing down of the transport. Those macromolecules play the role of ob-
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stacles for the diffusion of smaller molecules [38, 45]. Among the models proposed to

theoretically study the phenomenon of the anomalous diffusion, we want to mention

some Monte Carlo methods proposed in [23, 49]. The authors use a lattice model

to investigate how obstacles size, shape, and density influence the motion of both a

single agent and a population of agents, estimating the exponent of the power law of

the mean squared displacement.

So, in the case of anomalous diffusion, obstacles in a way produce a slowing down

effect on agents dynamics, as it is in general intuitive to expect talking about obstacles.

Is it always true?

It is not difficult to find models in which the presence of obstacles can surprisingly

facilitate the motion of particles. Let us think for instance to the Braess paradox : it

has been noticed that adding a barrier or a constraint in a road network can actually

increase the traffic flow or the human crowd flow [9,39].

In granular flows it has been studied how obstacles close to the exit can prevent

clogging. In experimental observations on the flow of granular media, when the par-

ticles pass through a constriction, it has been observed the drop of the flow or even

the complete arrest of the flow due to particle interactions (for a review of the phe-

nomenon of clogging of granular materials in bottleneck see for instance [53]). Several

examples of this phenomenon at different scale are well known. Everyone can observe

this effect in a saltcellar, but this phenomenon can happen in a silo, forcing a pro-

duction line to stop, or in a dense suspension of colloidal particles when they try to

pass through microchannels [31,32], or even at smaller scale, for electrons of the liquid

helium surface which pass through nanoconstrictions [47]. This outward flow drop is

explained as the consequence of the tendency of particles to form arches close to the

outlet. In the case of three–dimensional spherical grains discharging from a silo by

gravity, the probability of arches to be formed has been studied as a function of the

ratio between the size of the outlet size and the diameter of the beads [51] (see [50]

for a earlier two–dimensional analogous result). This probability decreases when the

ratio grows up to a critical value, beyond which no jamming can occur.

How is it possible to increase the flux trough a bottleneck? In the case of granular

flows a solution that has been implemented is to place an obstacle above the silo exit.

Even if it is contrary to common intuition, the choice of obstacles properly selected

and placed avoids the jamming because it prevents arches to be formed or to become

stable. Experimental evidence of this phenomenon is presented in [52], while in [2] it

has been verified in particle–based simulations.

In pedestrian flows (see, e.g., [7,33,34,37] for reviews of models and related prob-

4



lems), there is large and growing literature on the role that obstacles plays in the

dynamics . For instance in [19], great attention is payed to the possible ways to

handle obstacles, introducing a new modeling technique in obstacle parametrization

and management that guarantees also the opacity of the obstacle, i.e., the choice of

the authors is to model pedestrians dynamics in such a way that agents cannot see

through obstacles.

Similarly to the granular dynamics, the effect of clogs reduction by adding obsta-

cles, such as a suitable positioning of columns, is deeply investigated in the study of

pedestrian flows [33]. Although they reduce the accessible space, they slow down the

motion reducing the “faster–is–slower” effect. It has also been noticed that a suit-

able positioning of an obstacle close to the exit facilitates the evacuation of people in

panic situations. Indeed the obstacle tends to decrease the internal pressure among

pedestrian and breaks the symmetry in front of the exit, resulting in a faster outflow

(see e.g. [1, Section 6.3] and [35, 36]). The clogging at the door is reduced because

pedestrians can accumulate close to the obstacle and avoid the congestion in front

of the exit, producing the so called “waiting room” effect [25]. By preventing the

clogging at the door, a well–positioned obstacle reduce also the probability of injuries

under panicked escape.

Other works inspired our study. In the study of transport of active matter in

microscopic systems, for instance in drug-delivery design scenarios [40], ion moving

in molecular cytosol [3–5], percolation of aggressive acids through reactive porous

media [20], it is important to evaluate the efficiency of a medical treatment, the

properties of ionic currents through cellular membranes, the durability of a highly

permeable material. This is strictly connected to the time spent by the individual

particle (colloid, ion, acid molecule) in the constraining geometry of the external

environment.

This motivates the interest in studying the residence time of particles, i.e., the

typical time that an agent of the system needs to cross a finite space, possibly over-

coming some kind of barriers. This is one of the aims of the papers [15, 16] where

it has been considered a particle system undergoing an asymmetric simple exclusion

dynamics on a two–dimensional finite strip, at contact at two opposite side with two

mass reservoirs at different density levels (see [29] for a diffusion hopping model with

convection). It has been studied the effect of the presence of a barrier even when a

drift acts on particles. The study of the dynamics has been carried out by numerical

simulation and, in some cases, also analytically. The authors find non–trivial re-

sults when comparing the residence time in presence of the barrier with the residence
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time when the obstacle is absent. The residence time reveals to be not monotonic as

function of the size of the obstacle and this opens to the possibility to optimize the

residence time by adding a suitable barrier.

All previously reported examples remind us that when the number of agents and

interactions grows, for instance because of the presence of the obstacles, the possi-

bility of unexpected phenomena increases. In all previous examples, the interaction

of particles among each other plays a crucial role in the surprising effect due to the

presence of obstacles. We want to show that obstacles can induce non–trivial ef-

fects even in simpler models, when particles of the system are not interacting among

themselves [11–13].

The main problem in this dissertation is the study of the dynamics of some particle

models in a finite region of the plane R2. Firstly, we consider the geometry of a

rectangular strip with two opposite sides that are open boundaries, that we will think

as the vertical side of the strip. These vertical sides are at contact with two infinite

mass reservoirs at equilibrium at different densities ρL and ρR. Since we are interested

in studying how obstacles influence the dynamics, we will consider the presence of

large fixed reflective obstacles at rest into this strip. We consider also the horizontal

boundaries of the strip to be reflective boundaries. Particles enter into and exit from

the strip when they reach the open vertical sides.

In the first part of the thesis we consider, inside the strip, particles moving accord-

ing to the Markov process solving the linear Boltzmann transport equation (LBTE).

The linear Boltzmann equation is an important kinetic equation that is frequently

used for mathematical modeling of different systems, from neutron and electron dy-

namics to radiation transfer and cometary flow. The LBTE is a case of the Boltzmann

transport equation obtained by assuming that particles interact only with the medium

in which they are passing through, but they do not interact among themselves. It rep-

resents the evolution of the density of particles subjected to random collisions while

traveling freely. It describes the process of a particle that moves freely and that has

random transitions in the velocity. The transitions can be interpreted as an interac-

tion with a medium present in the environment, but the particles are not interacting

among themselves. The linear Boltzmann equation arises also as the correct kinetic

description of the Lorentz gas model in suitable limits.

We are interested in focusing on both collective and individual behavior. We will

present both theoretical and numerical results.

One interesting problem is to compute the stationary state to which the solution

f(x, v, t) representing the distribution of particles tends at large time. The computa-
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tion of the stationary state of the LBTE is commonly used for instance in radiation

therapy, in particular in dosimetry. In [46] a survey of numerical methods for the

stationary LBTE (Grid–Methods solver and Monte Carlo methods) is presented.

The stationary state of the linear Boltzmann equation will be totally characterized

in the diffusive limit, corresponding to the limit in which the particles average free

path between two consecutive jumps in the velocity tends to zero. We will prove

the existence and uniqueness of the stationary state and the convergence in the L∞

setting of the stationary solution of the LBTE to the stationary solution of the heat

equation with mixed boundary conditions: Dirichlet boundary condition with values

the density of the reservoirs on the open boundaries and homogeneous Neumann

boundary condition on the horizontal sides and on the boundary of the obstacles.

The stationary profile of the particle density will be even numerically constructed

with a Monte Carlo algorithm by simulating one by one the motion of single particles

and averaging over the obtained trajectories.

We will give great attention to the investigation of the residence time of particles.

We let particles start their motion from the left open boundary and we compute the

time that they spend into the strip until they eventually leave the channel through

the right side. We discard the particles exiting through the left boundary in this com-

putation. We compute, by averaging, the typical time needed to cross the strip and

we analyze its dependence on the size and position of a reflecting obstacle positioned

inside the strip. Surprisingly, the presence of reflective obstacles in the strip influences

the residence time in some non–monotonic ways, depending on the size and the posi-

tion of the obstacles. It is worth noticing that, for suitable dispositions of obstacles,

in the strip we measure a residence time smaller than in the empty strip case, that is

in absence of obstacles, and that there are cases in which the same obstacle, placed

in different positions, can produce both the effects, i.e. decreasing or increasing the

residence time. An unexpected symmetry in the position of the obstacle, with respect

to the center of the strip, emerges from this Monte Carlo data. The evaluation of the

residence time will be performed numerically.

In the second part of the thesis we will study a simpler model to fully understand

the residence time behavior we found for the linear Boltzmann dynamics. We consider

a 2D finite lattice with an equivalent geometry as before. The lattice is a rectangular

strip, where we may place a rectangular fixed obstacle. Again, the left and right side

of the strip are open boundaries, while the upper and lower sides and the boundaries

of the obstacles are reflective boundaries. We consider particles moving performing a

simple symmetric random walk. We first study numerically the residence time behav-
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ior. We show that the behavior of the residence time exhibits the same dependence

on the features of the obstacles observed when particles moved following the linear

Boltzmann equation.

We would like to evaluate exactly the expected residence time in this model, to

give a complete interpretation of previous numerical tests. To do this, we construct

his reduced 1D version.

We consider the one–dimensional lattice whose length is equal to the horizontal

length of the previous 2D lattice. We consider a simple symmetric random walk except

that in two sites, defects, where the probability to jump backwards and forwards are

suitably chosen. Since we want to mimic as good as possible the 2D case we interpret

the singular sites as the horizontal coordinates of the vertical sides of the 2D obstacle.

The probability of possible moves that we assign to a particle on a defected sites is

still 1/2 in the direction opposite with respect to the obstacle and λ in the direction

toward the obstacle. To compare the residence time in the one–dimensional case

to the results of two–dimensional experiments, here we call p the ratio between the

height of the obstacle and the height of the 2D strip. The particle on a defect site hits

the “obstacle” and it does not move with probability p/2 = 1/2 − λ, while it jumps

in the direction of the obstacle with probability λ = (1 − p)/2. With this choice,

calculating the residence time for this 1D model via Monte Carlo simulations, we find

good correspondence between the results of the 1D and the 2D model. Moreover, in

the case of this 1D toy model reduction we are able to compute exactly the residence

time in function of the position and the “size” of the barrier. So we will construct a

5 state reduced picture of the 1D model, that permit us to produce exact calculation

of the residence time for the 1D model.

We have found that the residence time has a complex dependence on the geomet-

rical parameters of the obstacle. The final result is the balance of two effects. On

the one hand the particle in presence of obstacle spends more time in the regions on

the left and on the right of the obstacle, on the other hand it spends less time in the

central region (the channels above and below the obstacle) with respect to the case

of absence of obstacle. This is due to the fact that the obstacle makes more difficult

to access to the central region, so it forces the particle to stay for a longer time in the

other two regions. The final effect will be the balance of the two effects.

In the third part of the thesis we will focus on a different question. We will consider

a crowd of people moving in an unknown area in condition of lack of visibility. Our

aim is to investigate how cooperation can slow down people in finding the exit with

respect to an individual behavior.
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We consider particles moving on a squared 2D lattice, representing a corridor,

where there is an exit, a site at the center of one side, that is not visible to pedestrian

due to the absence of visibility. Particles move undergoing a variation of the simple

symmetric random walk, where the closest sites do not have all the same probability

to be reached because this depends on a possible interaction among particles. So,

on one hand we consider particles to explore the environment randomly due to the

absence of visibility, on the other we want to mimic the tendency of pedestrians to

follow other people in the hope they will help them to found a way out. This herding

effect, especially visible in crowds in panic situation, is represented by a tendency for

particles to jump in the neighboring site where the largest group of particles is present.

In this model there is no simple exclusion, particles can jump on an occupied site, but

we study the effect of a buddying threshold of no–exclusion per site. If on the site

there are too many people (above the threshold), we assume it to become unattractive

for other particles. In this model, proposed in [17,18], if we consider the threshold to

be 0 (so pedestrians are not attracted by other people), we recover particles moving

via independent simple symmetric random walks (individual behavior).

We have to consider how pedestrians act when they reach a wall. We will mimic

via a parameter the tendency of people to follow the walls when trying to reach the

exit and we consider also the presence of an obstacle into the lattice [14].

Our results will be numerical studies of how the buddying threshold influence the

overall exit flux (evacuation rate) and the evacuation time in different cases (different

geometries due to obstacle and different effects of the wall) as function of the total

number of particles present in the lattice. To study the overall exit flux we consider

the stationary case in which the same number of particles is present in the corridor at

every time. This means that when a particle finds the exit and goes out of the lattice,

we insert a new one at the opposite side of the lattice. Instead, in the study of the

evacuation time we are interested in the time needed to let all the particles leave the

corridor.

We find that the tendency of people to follow the walls in every considered case

favor the evacuation. Another general effect is that the more is present the tendency to

form large groups, i.e., the bigger the buddying threshold is, the more the evacuation

will be inefficient. The presence of obstacles influences the dynamics. While in the

computation of the residence time in both previous models the results was symmetric

in the position of the same obstacle with respect to the center of the strip, now

there is a strong asymmetry in the effect of the same obstacle placed in different

position. We find that obstacles can favor effectively the evacuation flux and decrease

the evacuation time if they are placed suitably far from the exit, closer to the opposite
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side, while on the contrary obstacles close to the exit hinder the evacuation.

Finally, we will dedicate the last part of this thesis to the Lorentz model. In the

original version, Lorentz [42] discussed the motion of a ballistic particle which is elas-

tically scattered off by randomly placed, hard spherical obstacles to lay a microscopic

basis for Drudes electric conductivity of metals.

The Lorentz model is a classical model that describes transport in a spatially

heterogeneous medium. This is a classical model for finite velocity random motions:

particles perform uniform linear motion up to the instant of contact with static disks

when they are elastically reflected. The Lorentz model is a system of non–interacting

particles moving in a region where static small spheres (scatterers) are distributed

according to a Poisson probability measure.

Thus at high obstacle density, a tracer faces a heterogeneous environment charac-

terized by a significant excluded volume and a highly ramified remaining space and

may display many facets of anomalous transport like subdiffusion, crossover phenom-

ena, immobilized particles and long-time tails (see for instance [38], Sect.3.3). In

different limits such as Boltzmann–Grad limit or suitable low density limit the con-

nection with the linear Boltzmann equation has been investigated in several works

such as [6, 8, 30, 48]. Since we do not have a complete proof at the moment, we will

just dedicate some comments to the study of the convergence of the particle density

of the Lorentz model to the solution of the linear Boltzmann equation, that we expect

to hold even in our geometry in a suitable low density limit.
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Chapter 1

Linear Boltzmann

We introduce the linear Boltzmann equation in our domain: a rectangular strip with

large reflective obstacles. We claim our results concerning the characterization of the

stationary solution. We construct a Monte Carlo algorithm to simulate the dynamics

and we use it to construct numerically the stationary states and to evaluate the

residence time in presence of obstacles. Finally we prove the results on the stationary

solution of the equation.

1.1 Model and results

We consider a system of light particles moving in the two–dimensional space. We

choose as the domain a subset Ω of the finite strip (0, L1)× (0, L2) ⊂ R2. This strip

has two open boundaries, that we think as the left side ∂ΩL = {0} × (0, L2) and

the right side ∂ΩR = {L1} × (0, L2). The strip is in contact on the left side and on

the right side with two mass reservoirs at equilibrium with particle mass densities ρL

and ρR, respectively. Particles traveling into Ω are instead specularly reflected upon

colliding with the upper side (0, L1)× {L2} and lower side (0, L1)× {0} of the strip.

We consider the case in which large fixed obstacles are placed in the strip so that

the domain Ω is a connected set. These obstacles are convex sets with smooth reflective

boundaries. We consider a generic configuration of a finite number of obstacles with

positive mutual distance and positive distance from the sides of the strip. In the sequel

we will call ∂ΩE the union of the obstacle boundaries and the upper and lower sides

of the strip (see Figure 1.1). Therefore, when a particle reaches ∂ΩE it experiences a

specular reflection.

The linear Boltzmann equation is a kinetic linear equation, combining free trans-

port and scattering off of a medium. This equation consists of two terms: a free
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∂ΩL ∂ΩR

∂ΩE

Ω

ρRρL

Figure 1.1: Domain Ω: strip with large fixed obstacles, where ∂ΩL and ∂ΩR are the

vertical open boundaries and ∂ΩE are reflective boundaries.

transport term and a collision operator L.

Let us consider the phase space Ω × S1, where S1 := {v ∈ R2 : |v| = 1}. We will

consider the operator L with elastic collision kernel. The equation for (x, v) ∈ Ω×S1

and positive times t reads

(1.1) (∂t + v · ∇x)g(x, v, t) = ηεLg(x, v, t), x ∈ Ω, v ∈ S1, t ≥ 0

where, by the elastic collision rule v′ = v− 2(n · v)n, the operator L is defined for any

f ∈ L1(S1) as

(1.2) Lf(v) = λ

∫ 1

−1

[f(v′)− f(v)] dδ.

Here n = n(δ) is the outward pointing normal to a circular scatterer of radius 1 at the

point of collision among the particle with velocity v and the scatterer. So δ = sinα

if α is the angle of incidence between v and n that has δ as impact parameter (see

Figure 1.2); λ > 0 is a fixed parameter.

We denote by gε the solution of the equation corresponding to the value of ηε, that

is a positive parameter that we let go to +∞ as ε goes to 0+. The choice of the kernel

and the related parameters will be discussed at the end of this Section.

The equation describes the evolution of the density of particles, moving of linear

motion and having random collisions, against a circular scatterer, that preserve the

energy. The time between two consecutive jumps in the velocities is distributed with

exponential law with mean value (ληε)
−1. Since both random collisions and hits

against the elastic boundaries preserve the energy, the modulus of the velocity of a

particle moving in Ω is constant, so we consider it to be equal to one.

On the elastic boundary ∂ΩE we impose reflective boundary condition and on the
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~n

~vα

~v′

α

1
δ

Figure 1.2: Elastic collision with a scatterers: impact parameter δ and angle of inci-

dence α.

open boundary ∂ΩL ∪ ∂ΩR we set Dirichlet condition:

(1.3)

g(x, v′, t) = g(x, v, t) x ∈ ∂ΩE, v · n < 0, t ≥ 0

g(x, v, t) = fB(x, v) x ∈ ∂ΩL ∪ ∂ΩR, v · n > 0, t ≥ 0,

where fB is defined in (1.4) below and v′ is given by the elastic collision rule v′ =

v−2(n·v)n. Here we denote by n = n(x) the inward pointing normal on the boundary

∂Ω of the domain. We consider as initial datum the function f0(x, v) ∈ L∞(Ω × S1)

and we define fB (not depending on t) as

(1.4) fB(x, v) :=

ρL/2π x ∈ ∂ΩL, v · n > 0

ρR/2π x ∈ ∂ΩR, v · n > 0,

where 1/2π is the density of the uniform distribution on S1.

We are interested in the study of the stationary problem associated to (1.1)-(1.3):

(1.5)


v · ∇xg

S(x, v) = ηεLgS x ∈ Ω, v ∈ S1

gS(x, v′) = gS(x, v) x ∈ ∂ΩE, v · n < 0

gS(x, v) = fB(x, v) x ∈ ∂ΩL ∪ ∂ΩR, v · n > 0.

We want to investigate the behavior of the solution gSε of (1.5) and prove its con-

vergence to the stationary solution of the diffusion problem in Ω with mixed boundary
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conditions given by

(1.6)


∆ρ(x) = 0 x ∈ Ω

ρ(x) = ρL x ∈ ∂ΩL

ρ(x) = ρR x ∈ ∂ΩR

∂nρ(x) = 0 x ∈ ∂ΩE.

Theorem 1.1. If ε > 0 is sufficiently small there exists a unique stationary solution

gSε ∈ L∞(Ω× S1) of (1.5).

Theorem 1.2. The stationary solution gSε of (1.5) verifies

(1.7) gSε → ρ

as ε → 0, where ρ(x) is the solution to the problem (1.6). The convergence is in

L∞(Ω× S1).

The choice of the elastic collision kernel for the operator L defined in (1.2) is

due to the physical model we have in mind. We are considering a particle moving

with initial velocity v ∈ S1 and hitting an hard circular scatterer whose position

is random. The random impact parameter δ chosen uniformly in [−1, 1] allows to

individuate this collision. In a similar way we could let the particle move following

the Lorentz process, that is moving freely in a region where static small disks of radius

ε are distributed according to a Poisson probability measure and elastically colliding

with those disks. In this case for suitable choices of the mean value of the Poisson

distribution in terms of ε and ηε it could be possible to prove that the diffusive limit

for the linear Boltzmann equation and the Lorentz process in a (small disks) low

density limit are asymptotically equivalent in the limit ε → 0 (see Chapter 4, [6] for

the case of an infinite 2D slab with open boundary).

1.2 Stationary state: numerical study

We investigate, here, the stationary solution of the linear Boltzmann equation from

a numerical point of view. Our algorithm directly simulates the motion of single

particles following the linear Boltzmann equation. In the simulations we exploit the

interpretation of the linear Boltzmann equation as the equation describing a stochastic

jump process in the velocities and we directly simulate the motion of single particles.

We will show that the numerical stationary solution that we construct is close

to the solution of the associated Laplace problem (1.6) if the scale parameter ε is
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small enough, that is to say if the average time tm between two consecutive hits is

sufficiently small. This time will be called in the sequel mean flight time.

We will construct the solution of the Laplace problem (1.6) in our geometry by

using the COMSOL Multiphysics software.

We proceed in the following way: we consider particles entering in Ω from the

reservoirs. A particle starts its trajectory from the left boundary ∂ΩL or from the

right boundary ∂ΩR, where the mass density is ρL and ρR respectively. Therefore the

number of particles we let enter from each side is chosen to be proportional to ρL

and ρR. In other words, we select the starting side of the particle with probability

ρL/(ρL + ρR) (left side) and ρR/(ρL + ρR) (right side) respectively. Then we draw

uniformly the position x in ∂ΩL or ∂ΩR and the velocity v in S1 with v · n(x) > 0,

n(x) inward-pointing normal.

Once the particle started, it moves with uniform linear motion until it hits a

scatterers or the elastic boundary ∂ΩE. We pick th, the time until the hit with a

scatterers, following the exponential law of mean tm, with tm a fixed parameter. The

particle travels with velocity v for a time th. If during this time it hits the elastic

boundary ∂ΩE, its velocity changes performing an elastic collision. At time th we

simulate an hit with a scatterers by picking an impact parameter δ uniformly in

[−1, 1] and changing the velocity from v to v′ = v − 2(v · n)n, where δ = sinα and

n = n(δ) is the outward pointing normal to the scatterers such that the angle of

incidence between n and v is α (see Figure 1.2).

We proceed as before by letting the particle move until it leaves Ω by reaching

again the open boundary ∂ΩL ∪ ∂ΩR. Then the particle exits from the system and

we are ready to simulate another particle. We simulate a number N of particles.

The random number generator we use in our simulation is the Mersenne Twister

[43,44].

We want to construct the stationary solution of equation (1.1)-(1.3). Note that

we can simulate particles one by one since in the considered model particles are not

interacting. Moreover, being the stationary state not dependent on the initial datum

f0, we consider in this algorithm only particles starting from the reservoirs. We assume

that in the stationary state the density of particles in a region is proportional to the

total time spent by all particles in that region. Moreover, due to isotropy, there is no

preferential direction for the velocity, so the stationary gSε is not dependent on v.

We divide the space Ω in equal small square cells. For every particle we calculate

the time that it spends in every cell. Then we calculate the total time that particles

spend in each cell. For tm going to zero and N very big, in every infinitesimal region

of Ω the stationary density has to be proportional to the total time spent by particles
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in that region. Considering sufficiently small cells, for tm small enough and a number

of particles simulated N big enough, the total time spent in the cell we calculate is

proportional to our numerical stationary solution.

We construct with our algorithm a grid of sojourn times in the cells. The last step

we have to do is to normalize it. It is sufficient to multiply by a constant, obtained

by imposing the correct value of gSε in a point (e.g., the boundary datum). We call

our numerical solution htm(x). So we fix a cell in contact with the reservoir where we

calculated a sojourn time tc and consider the value fB of the stationary solution. We

choose as multiplication constant c = fB(x)/tc. So the simulated solution htm(x) is

constructed by multiplying the sojourn time in each cell for this constant c.

In the sequel we will show that for tm sufficiently small and N big enough, the sim-

ulated solution htm(x) well approximates the solution ρ(x) of the associated Laplace

problem.

All the simulations we are going to discuss in this Section are performed with

N = 5 · 107 particles.

Let us preliminary consider the case of Ω = (0, 4)× (0, 1) in absence of obstacles.

We fix mass densities at the reservoirs ρL = 1 and ρR = 0.5. In this first case there is

no dependence on the vertical coordinate in the solution of the Laplace problem (1.6).

Indeed we know that the problem has analytic solution ρ(x1, x2) = 1−x1/8, where we

are denoting by (x1, x2) ∈ R×R the spatial coordinates x in Ω. We divide the domain

in 200× 50 equal square cells and we consider simulations with different values of tm,

to understand which values of the mean time tm provide a good approximation of the

solution we are looking for.

In Figures 2.3 and 2.4 we show that the choice of tm of the order of 10−2 is suitable

for our purpose. Indeed in Figures 2.3 we compare the simulated solution htm with

the analytic solution for the values tm = 2 · 10−1, tm = 10−1, tm = 2 · 10−2 . We see

in a 3D plot and in a 2D plot, obtained from the previous one by averaging on the

x2 variable, that htm becomes closer to ρ(x1) when tm decreases. So in Figures 2.4

we fix the parameter tm = 10−2 and we verify that htm is close to the function ρ(x1)

showing the relative error |htm − ρ|/ρ.

We consider now the more interesting case with presence of obstacles in the strip.

Our domain Ω is the strip (0, 4) × (0, 1) minus the obstacles. We fix again mass

densities at the reservoirs ρL = 1 and ρR = 0.5. We fix again tm = 10−2, since we have

shown that in the empty case this choice for the exponential clock allows to construct a

numerical solution htm that is close to the analytical solution ρ(x1, x2) of the associated

Laplace problem (1.6). We propose different situations for the domain Ω and we show

in Figures 2.5 - 2.7 that in each case the simulation algorithm works correctly. We
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Figure 2.3: Plot of the simulated solutions htm in a 3D plot and in a 2D plot con-

structed by averaging on the x2 variable: in dark gray tm = 2·10−1, in gray tm = 10−1,

in light gray tm = 2 · 10−2. In black (grid and dashed line) the analytic solution ρ of

the associated Laplace problem.
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Figure 2.4: Simulation parameter tm = 10−2: relative error |htm − ρ|/ρ.

compare our numerical solution with the solution ρ(x1, x2) of the associated Laplace

problem (1.6). We show the plots of the htm and ρ and the map of the relative error

|htm − ρ|/ρ as in Figure 2.4 .

The first case we consider is the presence of a big squared obstacle with side 8·10−1,

in different positions into the strip. In Figure 2.5 the results on two different positions

are presented.

Another interesting case is the presence of a very thin and tall obstacle placed

vertically inside the strip. We show it in Figure 2.6, by picking a thin obstacle of

height of 8 · 10−1.

The last case we want to present is the presence in the strip of two obstacles. In

Figure 2.7 we consider two different situations: in the first we set in the strip two

squared obstacles with sides 6 · 10−1 long, in the second we place into the strip two

rectangular obstacles of sides 4 · 10−1 and 7 · 10−1.

Note that due to the presence of obstacles the solutions are not independent of
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Figure 2.5: Simulation parameter tm = 10−2: on the left in gray the numerical solution

htm and in black the solution ρ of the associated Laplace problem; on the right the

relative error |htm − ρ|/ρ. Into the strip there is a square obstacle with side 8 · 10−1.
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Figure 2.6: Simulation parameter tm = 10−2: on the left in gray the numerical solution

htm and in black the solution ρ of the associated Laplace problem; on the right the

relative error |htm − ρ|/ρ. In the strip is placed a very thin obstacle with height of

0.8.
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Figure 2.7: Simulation parameter tm = 10−2: on the left in gray the numerical solution

htm and in black the solution ρ of the associated Laplace problem; on the right the

relative error |htm − ρ|/ρ. In the first line we show the case of two squared obstacles

with side 6 · 10−1, in the second one a couple of rectangular obstacles, taller and

thinner than the squares.

the vertical coordinate x2 anymore as it was in the empty strip case. However, we can

notice that before and beyond the obstacles in the x1 direction the stationary states

are closer to a flat state than in the empty case, with a steeper slope in the tight

channels at sides of the obstacles. The total stationary mass flux through any vertical

line {x1}×(0, 1)∩Ω does not depend on x1. Indeed, this should follow from the Fick’s

law, that we expect to be valid also in presence of obstacles (in absence of obstacle,

being the limiting problem one–dimensional, the Fick’s law holds as shown in [6]),

together with the divergence theorem and the fact that the boundary conditions are

homogeneous on ∂ΩE. The Fick’s law would tell us that, in presence of obstacles, the

total flux on the lines {x1 = a}∩Ω is smaller than in the empty case, as it is possible

to see focusing on the vertical lines before the obstacles. In this sense, and opposite

to what happen in the case of the study of the residence time, we find on the flux the

intuitive result we expected.
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1.3 Residence time

We consider the domain (0, L1) × (0, L2) with the same boundary conditions as in

Section 1.1, namely, reflecting horizontal boundaries and open vertical boundaries.

As before Ω denotes a subset of this domain obtained by placing large fixed reflecting

obstacles. Particles in Ω move according to the Markov process solving the linear

Boltzmann equation and described in detail in Section 1.2.

In Section 1.2 we investigated the stationary state of the system and we demon-

strated that, provided the mean flight time tm is sufficiently small, the stationary

state is very well approximated by the solution of the Laplace problem (1.6) even in

presence of obstacles. We have also noted that, due to the presence of obstacles, the

total flux crossing the strip is smaller with respect to the one measured in absence of

obstacles. This implies that if we consider a fixed number of particles entering the

strip throught the left boundary, the number of them exiting through the right bound-

ary decreses when an obstacle is inserted. In our simulations we remark that the ratio

between the number of particles exiting through the left boundary in presence of an

obstacle and in the empty strip case does not depend very much on the geometry of

the obstacle and, in the worst case we considered, it is approximatively equal to 1/5.

Detailed data for the different cases we studied are reported in the figure captions of

this section.

In this section, on the other hand, we focus on those particles that do the entire

trip, that is to say they enter through the left boundary and eventually exit the strip

through the right one. Limiting our numerical computation to these particles, we

measure the average time needed to cross the strip, also called the residence time and

discuss its dependence on the size and on the position of a large fixed obstacle placed

in the strip. The surprising result is that the residence time is not monotonic with

respect to the obstacle parameters, such as position and size. More precisely, we show

that obstacles can increase or decrease the residence time with respect to the empty

strip case depending on their side lengths and on their position. Moreover, in some

cases, by varying only one of these parameters a transition from the increasing effect

to the decreasing effect is observed.

In some cases we observe that the residence time measured in presence of an

obstacle is smaller than the one measured for the empty strip. In other words, we

find that the obstacle is able to select those particles that cross the strip in a smaller

time. More precisely, particles that succeed to cross the strip do it faster than they

would in absence of obstacles.

We now discuss the different cases we considered. All numerical details are in
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Figure 3.8: Residence time vs. height of a centered rectangular obstacle with fixed

width 4 ·10−2 (on the left) and 4 ·10−1 (on the right). Simulation parameters: L1 = 4,

L2 = 1, tm = 2 · 10−2, total number of inserted particles 108, the total number of

particles exiting through the right boundary varies from 5.3 · 105 to 3.6 · 105 (on the

left) and from 5.3 · 105 to 2.1 · 105 (on the right) depending on the obstacle height.

The solid lines represent the value of the residence time measured for the empty strip

(no obstacle).

the figure captions. The statistical error is not represented in the pictures since it is

negligible and it could not be appreciated in the graphs. In each figure we draw a

graph reporting the numerical data and a schematic picture illustrating the performed

experiment. We first describe our result and at the end of this section we propose a

possible interpretation.

In Figure 3.8 we report the residence time as a function of the obstacle height.

The obstacle is placed at the center of the strip and its width is very small on the left

and larger on the right. We notice that in the case of a thin barrier, the residence time

increases with the height of the obstacle. On the other hand, for a wider obstacle, we

do not find this a priori intuitive result, but we observe a not monotonic dependence

of the residence time on the obstacle height. In particular, it is interesting to remark

that if the obstacle height is chosen smaller that 0.65 the residence time is smaller

than the one measured for the empty strip. This effect is even stronger if the width

of the obstacle is increased (Figure 3.9).
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Figure 3.9: Residence time vs. height of a centered rectangular obstacle with fixed

width 8 · 10−1 (on the left) and 12 · 10−1 (on the right). Simulation parameters:

L1 = 4, L2 = 1, tm = 2 ·10−2, total number of inserted particles 108, the total number

of particles exiting through the right boundary varies from 5.2 · 105 to 1.4 · 105 (on

the left) and from 5.2 ·105 to 1.1 ·105 (on the right) depending on the obstacle height.

The solid lines represent the value of the residence time measured for the empty strip

(no obstacle).

In the left panel of Figure 3.10 we report the residence time as a function of the

obstacle width. The obstacle is placed at the center of the strip and its height is fixed

to 0.8. When the barrier is thin the residence time is larger than the one measured in

the empty strip case. But, when the width is increased, the residence time decreases

and at about 0.7 it becomes smaller than the empty case value. The minimum is

reached at about 2.3, then the residence time starts to increase and when the width

of the obstacles equals that of the strip the residence time becomes equal to the empty

strip value. This last fact is rather obvious, indeed, in this case the strip reduces to

two independent channels having the same width of the original strip.

In the right panel of Figure 3.10 a centered square obstacle is considered. We note

that the residence time happens to be a monotonic decreasing function of the obstacle

side length.

In Figure 3.11 we show that, and this is really surprising, the residence time is

not monotonic even as a function of the position of the center of the obstacle. In
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Figure 3.10: Residence time vs. width of a centered rectangular obstacle with fixed

height 0.8 (on the left) and vs. the side length of a centered squared obstacle (on the

right). Simulation parameters: L1 = 4, L2 = 1, tm = 2 ·10−2, total number of inserted

particles 108, the total number of particles exiting through the right boundary varies

from 4.2 · 105 to 1.1 · 105 (on the left) and from 5.3 · 105 to 1.3 · 105 (on the right)

depending on the obstacle width. The solid lines represent the value of the residence

time measured for the empty strip (no obstacle).

the left panel a squared obstacle of side length 0.8 is considered, whereas in the right

panel a thin rectangular obstacle 0.04 × 0.8 is placed in the strip. In both cases the

residence time is not monotonic and attains its minimum value when the obstacle is

placed in the center of the strip. It is worth noting, that in the case on the left when

the position of the center lays between 1.5 and 2.5 the residence time in presence of

the obstacles is smaller than the corresponding value for the empty strip.

Summarizing, the numerical experiments reported in Figures 3.8–3.11 show that

the residence time strongly depends on the obstacle geometry and position. In par-

ticular it is seen that large centered obstacles favor the selection of particles crossing

the strip faster than in the empty strip case.

A possible interpretation of these results can be given. The strip (0, L1)×(0, L2) is

partitioned in the three rectangles L (the part on the left of the obstacles), R (the part

on the right of the obstacles), and C = (0, L1)× (0, L2) \ (L ∪ R). The phenomenon

we reported above can be explained as a consequence of two competing effects: the
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Figure 3.11: Residence time vs. position of the center of the obstacle. The obstacle is a

square of side length 0.8 on the left and a rectangle of side lengths 0.04 and 0.8 on the

right. Simulation parameters: L1 = 4, L2 = 1, tm = 2 · 10−2, total number of inserted

particles 108, the total number of particles exiting through the right boundary is stable

at the order of 2.6 · 105 (on the left) and of 4 · 105 (on the right) not depending on the

obstacle position. The solid lines represent the value of the residence time measured

for the empty strip (no obstacle).

total time spent by a particle in the channels between the obstacle and the horizontal

boundaries is smaller with respect to the time typically spent in C in the empty strip

case because the obstacle makes the channels more difficult to access. So a particle

crosses the channels in average less times with respect to the empty strip case (once

the particle is in the channel it spends the same time in C in both the empty strip case

and the obstacle case since in C the obstacle acts as the horizontal boundary). On

the other hand the times spent in L and in R are larger if compared to the times spent

there by a particle in the empty strip case, due to the fact that it is more difficult

to leave these regions and enter in the channels flanking the obstacle. The increase

or the decrease of the residence time compared to the empty strip case depends on

which of the two effects dominates the particle dynamics.

In Figure 3.12 we consider the geometry in the right panel of Figure 3.8. We

compute the average time spent by particles in small squared cells (0.02× 0.02). This

local residence time in presence of the obstacle is larger than the one measured in the
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Figure 3.12: As in the right panel in Figure 3.8. In the left panel the height of the

obstacle is equal to 0.8. Left panel: the mean time spent by particles crossing the

strip in each point of the strip (0.02× 0.02 cells have been considered) for the empty

strip case (black) and in presence of the obstacle (gray). Right panel: residence time

in regions L (circles), C (squares), and R (triangles) in presence of the obstacle (gray)

and for the empty strip case (black).

empty strip, indeed the gray surface in the picture is always above the black one. But,

if the total residence time spent in the regions L,C, and R is computed, one discovers

that the time spent in the region C decreases in presence of the obstacle, whereas

the time spent in L and R increases. Note that the local residence time in the cells

belonging to the channels in C is larger with respect to the empty strip case, but the

total time in C is smaller due to the fact that the available volume in C is decreased

by the presence of the obstacle. Hence, the result in the right panel in Figure 3.8 can

be explained as follows: if the height of the obstacle is smaller than 0.6 the effect in

C dominates the one in L and R so that the total residence time decreases. On the

other hand, when the height is larger than 0.6 the increase of the residence time in L

and R dominates its decrease in C, so that the total residence time increases.

The Figure 3.13, referring to the geometry in the left panel in Figure 3.10, and the

Figure 3.14, referring to the geometry in the left panel in Figure 3.11, can be discussed

similarly. We just note that in Figures 3.12 and 3.13 the circles and triangles, which

correspond to the residence time in L and R, coincide due to the symmetry of the

system. Indeed, in both cases the center of the obstacle is at the center of the strip.
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Figure 3.13: As in Figure 3.12 for the geometry in the left panel in Figure 3.10. In

the left panel the width of the obstacle is 2.28.
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Figure 3.14: As in Figure 3.12 for the geometry in the left panel in Figure 3.11. In

the left panel the position of the center of the obstacle is 0.8.

1.4 Proof of results

We prove Theorems 1.1 and 1.2. We firstly construct the solution of the linear Boltz-

mann problem in form of a Dyson series. Then we are able to prove the existence and

uniqueness of the associated stationary problem. To do this we exploit the diffusive

limit of the linear Boltzmann equation in a L∞ setting and in a bigger domain con-

taining Ω, by means of the Hilbert expansion method (see [6,10,26]). The stationary

solution is constructed in the form of a Neumann series to avoid the exchange of the

limits t→∞, ε→ 0, following the idea of [6]. Eventually we prove the convergence of

the stationary state to the solution of the mixed Laplace problem. This also requires

the Hilbert expansion method. The auxiliary results stated are proved after the main

theorems.

Let us consider the problem (1.1)-(1.3) with the datum gε(x, v, 0) = f0(x, v) ∈
L∞(Ω×S1). We can express the operator defined in (1.2) as Lf(v) = 2λ(K−I)f(v),
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where

(4.8) (Kf)(v) =
1

2

∫ 1

−1

dδ f(v′)

and I is the identity. Therefore the equation (1.1) can be written as

(4.9) ∂tf + (v · ∇x + 2ηελI)f = 2ηελKf.

We want to exploit the Duhamel’s principle and express the solution as a series

expansion. We consider the semigroup generated by A = (v · ∇x + 2ηελI). We

recall that in the whole plane R2 this semigroup acts as e−tAf(x, v) = e−2ληεtf(x −
vt, v), while the semigroup generated only by the transport term v · ∇x would be

e−t v·∇f(x, v) = f(x− vt, v).

We want to consider the semigroup generated by A on our domain Ω initial datum

f0 and boundary conditions (1.3). Recall that ∂ΩE is a specular reflective boundary

while on ∂ΩL ∪ ∂ΩR the system is in contact with reservoirs with particle densities

fB(x, v). Since the equation describes the evolution of a particle moving in the space

with velocity of modulus one, having random collisions with impact parameter δ,

for any sequence of collision times and impact parameters ti, δi we can construct

the backward trajectory of a particle as long as it stays in Ω. Indeed the backward

trajectory for a particle in (x, v) at time t starts by letting the particle move with

velocity −v. For a time t− t1 it does not hit any scatterers, but if the particle reaches

the elastic boundary ∂ΩE during this time, the velocity −v becomes −v′ following the

elastic collision rule −v′ = −(v− 2(n · v)n), where n is the inward pointing normal to

Ω. After a time t− t1 the particle performs a collision with impact parameter δ1 that

produces the velocity −v1. Then again the particles travels for a time t1−t2 elastically

colliding if touching the boundary ∂ΩE and so on until it reaches a reservoir or it has

traveled for a total time t.

In the same way, given the sequence x, v, t1, . . ., tm, δ1, . . ., δm, we define the

flow Φ−tm (x, v, t1, . . . , tm, δ1, . . . , δm) as the backward trajectory starting from x with

velocity v and having m transition in velocity obtained after a time t−t1, . . ., ti−ti+1,

. . ., tm (i = 1, . . . ,m − 1) by a scattering with an hard disk with impact parameter

respectively δi (i = 1, . . . ,m). We impose that the trajectories described by this flow

Φ−t(x, v) make a change of velocity from v to v′ = v − 2(n · v)n any time the elastic

boundary ∂ΩE is reached.

We define the function τ = τ(x, v, t, t1, . . . , tm, δ1, . . . , δm) that represents the

time when the particle that is in (x, v) at time t leaves a reservoirs and it enters

into the strip. So if the backward trajectory having collision times and parameters
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t1, . . . , tm, δ1, . . . , δm reaches the boundary ∂ΩL ∪ ∂ΩR in the time interval [0, t], then

it happens after a backward time t − τ . If the trajectory Φ−s(x, v) never hits the

boundary ∂ΩL ∪ ∂ΩR for any time s ∈ [0, t] we set τ = 0.

We are now able to write the solution gε(x, v, t) using the Duhamel’s principle. The

semigroup generated by A on our domain has a transport term that we can express

thanks to the flow Φ−t(x, v), and the transported datum is fB or f0 depending on the

case the backward trajectory touches a reservoir in the time interval [0, t] on not. We

use the function τ to distinguish these two cases. We consider the collision operator

2ληεK as the source term for the linear problem (4.9). So we construct the following

expression for gε

gε(x, v, t) =e−2ληεtf0(Φ−t0 (x, v))χ(τ = 0) + e−2ληε(t−τ)fB(Φ
−(t−τ)
0 (x, v))χ(τ > 0)+

+ ληε

∫ t

0

e−2ληε(t−t1)2Kgε(Φ−(t−t1)
0 (x, v), t1)χ(τ < t1) dt1.

(4.10)

The notation χ represents the characteristic function.

The meaning of (4.10) is clear: we separate the contribution given to gε from

trajectories transporting the initial datum f0, having no collisions with scatterers and

never hitting a reservoirs in the time interval [0, t]; the contribution from trajectories

transporting the initial datum fB exiting from a reservoirs at time τ and than moving

in Ω until the time t without colliding any scatterers; finally the last term is the

contribution due to trajectories having the last collision with a scatterers at time t1

and never touching the reservoirs in the time interval [t1, t].

We iterate the procedure by using (4.10) again for the gε in the last integral and

from (4.8) we find:

gε(x, v, t) = e−2ληεtf0(Φ−t0 (x, v))χ(τ = 0) + e−2ληε(t−τ)fB(Φ
−(t−τ)
0 (x, v))χ(τ > 0)

+ ληε

∫ t

0

dt1e
−2ληε(t−t1)

∫ 1

−1

dδ1

[
e−2ληεt1f0(Φ−t1 (x, v, t1, δ1))χ(τ = 0)

+ e−2ληε(t1−τ)fB(Φ
−(t−τ)
1 (x, v, t1, δ1))χ(τ > 0)χ(τ < t1)

+ ληε

∫ t1

0

dt2 e
−2ληε(t1−t2)

∫ 1

−1

dδ2gε(Φ
−(t−t2)
1 (x, v, t1, δ1), t2)χ(τ < t2)

]
.

(4.11)

By successive iterations we write the series expansion for the density of particles
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gε(x, v, t) as

gε(x, v, t) = e−2ληεtf0(Φ−t0 (x, v))χ(τ = 0) +
∑
m≥1

e−2ληεt(ληε)
m

∫ t

0

dt1 . . .

∫ tm−1

0

dtm∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmχ(τ = 0)f0(Φ−tm (x, v, t1, . . . , tm, δ1, . . . , δm))

+ e−2ληε(t−τ)fB(Φ
−(t−τ)
0 (x, v))χ(τ > 0) +

∑
m≥1

(ληε)
m

∫ t

0

dt1 . . .

∫ tm−1

0

dtm

∫ 1

−1

dδ1 . . .∫ 1

−1

dδmχ(τ < tm)χ(τ > 0)e−2ληε(t−τ)fB(Φ−(t−τ)
m (x, v, t1, . . . , tm, δ1, . . . , δm)) =

=ginε (x, v, t) + goutε (x, v, t).

(4.12)

Note that the series are clearly convergent in L+∞.

In (4.12) the terms with χ(τ = 0) define ginε that represents the contributions to gε

due to trajectories that stay in Ω for every time in [0, t] while the terms with χ(τ > 0)

define goutε that collects the contributions due to trajectories leaving a mass reservoir

at time τ > 0.

Note that goutε solves the problem (1.1)-(1.3) with initial datum f0 = 0.

We will use the shorthand notation Φ−s(x, v) instead of Φ−sm (x, v, t1, . . . , tm, δ1, . . . , δm)

where it is clear by the context to which sequence of collisions we refer. Moreover,

the terms with zero collision will be included in the series as the m = 0 terms.

We denote by Sε acting on any h ∈ L∞(Ω×S1) the Markov semigroup associated

to the ginε term in (4.12) for an initial datum h, namely

(4.13)

(Sε(t)h)(x, v)=
∑
m≥0

e−2ληεt(ληε)
m

∫ t

0

dt1. . .

∫ tm−1

0

dtm

∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmχ(τ = 0)h(Φ−t(x, v)),

so that in (4.12) ginε (t) = Sε(t)f0.

Proposition 4.1. There exists ε0 > 0 such that for any ε < ε0 and for any h ∈
L∞(Ω× S1) it holds

(4.14) ‖Sε(ηε)h‖∞ ≤ α‖h‖∞, α < 1.

Note that in the estimate (4.14) we are considering t = ηε and the estimate is

saying that there is a strictly positive probability for a backward trajectory to exit

from Ω in a time of the order of ηε.
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Proof of Theorem 1.1. From (4.12) the stationary solution gSε of the problem (1.5)

verifies

gSε = goutε (t0) + Sε(t0)gSε ,

for every t0 > 0. We can formally write it by iterating the previous one in the form

of the Neumann series

(4.15) gSε =
∑
N≥0

(Sε(t0))Ngoutε (t0).

In order to verify the existence and uniqueness of gSε we show that the (4.15)

converges. Indeed from Proposition 4.1 and (4.15), chosen t0 = ηε

‖gSε ‖∞≤
∑
N≥0

‖(Sε(ηε))Ngoutε ‖∞ ≤
∑
N>0

αN‖goutε (ηε)‖∞ ≤
1

1− α
‖goutε ‖∞≤

max{ρL, ρR}
1− α

.

As a consequence the Neumann series (4.15) converges in L∞ and identifies a single

element in L∞. Choosing an arbitrary t0 bigger than ηε of the same order of ηε and

thanks to the semigroup property of Sε it follows that gSε does not depend on the time

t0. So there exists a unique stationary solution gSε ∈ L∞(Ω× S1) satisfying (1.5).

In order to prove Theorem 1.2 we need some properties of the linear Boltzmann

operator L defined in (1.2). We summarize them in the next lemma.

Lemma 4.1. Let L be the operator defined in (1.2), then L is a selfadjoint operator on

L2(S1) and has the form L = 2λ(K−I) where K is a selfadjoint and compact operator

(in L2(S1)). Moreover, K is positive and its spectrum is contained in [0, 1]. The value

0 is the only accumulation point for the spectrum and 1 is a simple eigenvalue. So it

holds that {KerL}⊥ = {h ∈ L2(S1) :
∫
S1 dv h(v) = 0} and there exists C > 0 such

that for any h ∈ L∞(S1) that verifies
∫
S1 dv h(v) = 0 we have

(4.16) ‖L−1h‖∞ ≤ C‖h‖∞.

Proof of Lemma 4.1. The existence and the estimate of norm of L−1 are discussed

in Lemma 4.1 from Section 4.1 of [6]. The compactness of the operator K and the

spectral property of L are discussed in [26].

Proof of Theorem 1.2. The proof makes use of the Hilbert expansion (see e.g. [6, 10,

26]). Assume that gSε has the following form

gSε (x, v) = g(0)(x) +
+∞∑
k=1

(
1

ηε

)k
g(k)(x, v),
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where g(k) are not depending on ηε. We require g(0) to satisfy the same Dirichlet

boundary conditions as the whole solution gSε on ∂ΩL ∪ ∂ΩR:

(4.17)

g(0)(x) = ρL x ∈ ∂ΩL

g(0)(x) = ρR x ∈ ∂ΩR.

By imposing that gSε solves (1.5) and by comparing terms of the same order we

get the following chain of equations:

v · ∇xg
(k) = Lg(k+1), k ≥ 0,

where we used that Lg(0)(x) = 0 since g(0) is independent of v. The first two equations

read

(i) v · ∇xg
(0)(x) = Lg(1)(x, v),

(ii) v · ∇xg
(1)(x, v) = Lg(2)(x, v).

Let us consider the first one. By the Fredholm alternative, this equation has a so-

lution if and only if the left hand side belongs to (KerL)⊥. We recall that the null

space of L is constituted by the constant functions (with respect to v), so we can

solve equation (i) if and only if the left hand side belongs to (KerL)⊥ = {h ∈
L2(S1) such that

∫
S1 dv h(v) = 0} (see Lemma 4.1). Since v · ∇xg

(0)(x) is an odd

function of v, it belongs to (KerL)⊥. So we can invert the operator L and set

(4.18) g(1)(x, v) = L−1(v · ∇xg
(0)(x)) + ζ(1)(x),

where ζ(1)(x) ∈ KerL and L−1(v · ∇xg
0) is an odd function of v since L−1 preserves

the parity, namely it maps odd (even) function of v in odd (even) functions (see [26]).

We integrate equation (ii) with respect to the uniform measure on S1. We can

notice that
∫
S1 dv v · ∇xζ

(1)(x) = 0 (ζ(1) depends only on x, so the function in the

integral is odd in the velocity) and
∫
S1 dvLg(2) = 0 (since operator L preserves mass),

so by (4.18) we obtain

(4.19)
1

2π

(∫
S1

dv v · ∇x(L−1(v · ∇xg
(0)(x)))

)
= 0.

By expanding the scalar product and using the linearity of L−1 we get

(4.20) −
2∑

i,j=1

Di,j∂xi∂xjg
(0)(x) = 0.
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We define the 2× 2 matrix Di,j = 1
2π

∫
S1 dv vi(−L−1)vj and we observe that Dij = 0

if i 6= j as follows by the change vi → −vi while D11 = D22 = D > 0 thanks to the

isotropy and the spectral property of the operator (see [26]). Hence D is given by the

formula (4.33)

D =
1

4π

∫
S1

dv v · (−L)−1v,

and the integrated equation (ii) becomes

(4.21)
1

2π

(∫
S1

dv v · ∇x(L−1(v · ∇xg
(0)(x)))

)
= 0⇔ −D∆xg

(0)(x) = 0.

We require gSε (x, v) to satisfy the reflective boundary condition gSε (x, v′) = gSε (x, v)

on ∂ΩE. By imposing it on the first term g(1)(x, v) = g(1)(x, v′) for every x ∈ ∂ΩE,

v · n < 0, from (4.18) we obtain

(4.22) L(−1)(v · ∇xg
(0)) + ζ(1)(x) = L(−1)(v′ · ∇xg

(0)) + ζ(1)(x).

By means of the elastic collision rule v′ = v − 2(v · n)n, the linearity of L−1 allow us

to write

L(−1)((v − 2(v · n)n) · ∇xg
(0)) = L(−1)(v · ∇xg

(0))− 2(n · ∇xg
(0))L(−1)(v · n).

Left and right members in (4.22) are the same if and only if (n ·∇xg
(0))L(−1)(v ·n) = 0.

Since
∫
S1 dv v ·n = 0 we get L(−1)(v ·n) 6= 0, so the only possibility is (n ·∇xg

(0)) = 0.

Therefore g(0)(x) has to satisfy the Neumann boundary conditions ∂ng
(0)(x) = 0, for

all x ∈ ∂ΩE.

From the previous one, (4.21) and (4.17) we have shown that the term g(0)(x)

solves the problem

(4.23)


∆xg

(0)(x) = 0 x ∈ Ω

g(0)(x) = ρL x ∈ ∂ΩL

g(0)(x) = ρR x ∈ ∂ΩR

∂ng
(0)(x) = 0 x ∈ ∂ΩE.

We can deal with this mixed problem following the method of [41], Chapt. II. Fur-

thermore, regularity results guarantee g0 ∈ C∞(Ω) (see [27], Chapt. 6).

Since (4.19) shows that
∫
S1 dv v · ∇xg

(1) = 0, we can invert L in equation (ii) to

obtain

(4.24) g(2)(x, v) = L−1(v · ∇xL−1(v · ∇xg
(0)(x))) + L−1(v · ∇xζ

(1)(x)) + ζ(2)(x),
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where ζ(2) belongs to the kernel of L.

Now, integrating the third equation v · ∇xg
(2)(x) = Lg(3)(x, v) with respect to the

uniform measure on S1, we find thanks to (4.24)∫
S1

dv v · ∇x(L−1(v · ∇xL−1(v · ∇xg
(0)(x))))+

+

∫
S1

dv v · ∇x(L−1(v · ∇xζ
(1)(x))) +

∫
S1

dv v · ∇x(ζ
(2)(x)) = 0.

(4.25)

The last integral is null because of the independence of ζ(2)(x) from v. The first

integral is null because the function in the integral is an odd function of the velocity

thanks to the fact that the operator L−1 preserves the parity. The (4.25) becomes

(4.26)

∫
S1

dv v · ∇x(L−1(v · ∇xζ
(1)(x))) = −D∆xζ

(1)(x) = 0

Since there are no restriction on the choice of the boundary condition, we impose the

Dirichlet data ζ(1)(x) = 0 on the boundary ∂ΩL ∪ ∂ΩR. So that by the previous and

(4.26) we find ζ(1)(x) ≡ 0 and hence g(1)(x, v) = L−1(v · ∇xg
(0)(x)).

Because of the (4.21) the first term of the right hand side of equation (4.24) is null

too. So (4.24) reduces to g(2)(x, v) = ζ(2)(x).

Moreover from the third equation we get, by inverting L,

g(3)(x, v) = L−1(v · ∇xg
(2)(x, v)) + ζ(3)(x) = L−1(v · ∇xζ

(2)(x)) + ζ(3)(x),

with ζ(3)(x) belonging to KerL.

By integrating on S1 the fourth equation v ·∇xg
(3) = Lg(4) and by exploiting that∫

S1 dv Lg4(x, v) = 0 and that
∫
S1 dv v · ∇xζ

(3)(x) = 0 we find

(4.27)

∫
S1

dv v · ∇x(L−1(v · ∇xζ
(2)(x))) = −D∆xζ

(2)(x) = 0.

We choose zero boundary condition at the reservoirs, namely ζ(2)(x) = 0 on ∂ΩL∪∂ΩR,

so we find ζ(2)(x) ≡ 0. Then g(2)(x, v) ≡ 0.

We can now write the expansion for gSε as

(4.28) gSε = g(0) +
1

ηε
g(1) +

1

ηε
Rηε .

The remainder Rηε satisfies

(4.29) v · ∇xRηε = ηεLRηε .
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We required g(0) to satisfy the same boundary conditions as the whole solution at

contact with the reservoirs, namely on ∂ΩL∪∂ΩR, so the boundary conditions for Rηε

read

(4.30)

Rηε(x, v) = −L−1(v · ∇xg
(0)(x)) x ∈ ∂ΩL ∪ ∂ΩR , v · n(x) > 0,

Rηε(x, v
′) = Rηε(x, v) x ∈ ∂Ω̃E , v · n(x) < 0.

Note that the problem (4.29)-(4.30) has the form of (1.5). From Theorem 1.1 we

know that it admits a unique solution in L∞.

From the (4.28), thanks to the the fact that both g(1) and Rηε are bounded in L∞

norm, we conclude that gSε → g(0).

In order to prove Proposition 4.1 we follow the strategy of the proof of Proposition

3.1 in [6]. Here we have the additional difficulty of the specular reflective boundaries

of horizontal sides of the strip and the presence of the obstacles in Ω. In the proof are

exploited the diffusive limit of the linear Boltzmann equation in a L∞ setting and in

a bigger domain containing Ω as stated in Proposition 4.2 below and the properties

of L summarized in Lemma 4.1.

We construct the extended domain Λ as the infinite strip constructed by removing

the left and right sides of Ω and keeping the upper and lower elastic boundaries at

x2 = 0 and x2 = L2 and the obstacles into Ω (see Figure 4.15). We call ∂ΛE the union

of upper and lower sides of Λ with the obstacles boundaries.

∂ΛE

Λ

Figure 4.15: Domain Λ: infinite strip with big fixed obstacles: the whole boundaries

of Λ is a specular reflective boundary.

We introduce hε : Λ×S1× [0, T ]→ R+ the solution of the following rescaled linear

Boltzmann equation

(4.31)


(∂t + ηεv · ∇x)hε = η2

εLhε x ∈ Λ

hε(x, v
′, t) = hε(x, v, t) x ∈ ∂ΛE, v · n < 0, t ≥ 0

hε(x, v, 0) = ρ0(x) x ∈ Λ,
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where ρ0(x) is a smooth function of the only variable x (local equilibrium).

Proposition 4.2. Let hε be the solution of (4.31), with an initial datum ρ0 ∈ C∞(Λ)

such that there exists M > 0 with ρ0(x) = 0 if |x| > M and ∂nρ0(x) = 0 for x ∈ ∂ΛE.

Then, as ε→ 0, hε converges to the solution of the heat equation

(4.32)


∂tρ−D∆ρ = 0 x ∈ Λ

ρ(x, 0) = ρ0(x) x ∈ Λ

∂nρ(x, t) = 0 x ∈ ∂ΛE, t ≥ 0,

where the diffusion coefficient D is given by the formula

(4.33) D =
1

4π

∫
S1

dv v · (−L)−1v.

The convergence is in L∞([0, T ];L∞(Λ× S1)).

Proof of Proposition 4.1. The semigroup Sε defined in (4.13) can be equivalently writ-

ten as extended to functions belonging to L∞(Λ× S1), namely

(Sε(t)f)(x, v) =χΩ(x)
∑
m≥0

e−2ληεt(ληε)
m

∫ t

0

dt1 . . .

∫ m−1

0

dtm∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmχ(τ = 0)f(Φ−t(x, v))χΩ(Φ−t(x)),

(4.34)

for any f ∈ L∞(Λ×S1), where χΩ is the characteristic function of Ω and Φ−t(x) is the

first component (the position) of Φ−t(x, v), the backward flux individuated by x, v,

t1, . . ., tm, δ1, . . ., δm. The addition of χΩ(Φ−t(x)) guarantees together with χ(τ = 0)

that the dynamics stay internal to Ω. Moreover, the following estimate holds

Sε(t)f ≤‖f‖∞
∑
m≥0

e−2ληεt(ληε)
m

∫ t

0

dt1 . . .

∫ m−1

0

dtm

∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmχΩ(Φ−t(x)).

We construct χδΩ ∈ C∞(Λ), a mollified version of χΩ, χδΩ ≥ χΩ, χδΩ ≤ 1 and Ω ⊂
supp(χδΩ) ⊂ (−δ, L1 + δ)× [0, L2]. So we can write

Sε(t)f ≤‖f‖∞
∑
m≥0

e−2ληεt(ληε)
m

∫ t

0

dt1 . . .

∫ m−1

0

dtm

∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmχ
δ
Ω(Φ−t(x)).

(4.35)

Note that the series in (4.35) defines a function F which solves

(4.36)


(∂t + v · ∇x)F (x, v, t) = ηεLF (x, v, t) x ∈ Λ

F (x, v′, t) = F (x, v, t) x ∈ ∂ΛE, v · n < 0, t ≥ 0

F (x, v, 0) = χδΩ(x) x ∈ Λ.
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Defining Gε(x, v, t) as F (x, v, ηεt), Gε solves (4.31) with initial datum ρ0 = χδΩ.

Thanks to Proposition 4.2 we know that at time t = 1

‖Gε(1)− ρδ(1)‖∞ ≤ ω(ε)

where ρδ solves (4.32) with initial datum χδΩ and ω(ε) denotes a positive function

vanishing with ε. Moreover, we can notice that the function ρδ is the solution of a

diffusion equation with initial datum 0 ≤ χδΩ ≤ 1 with support in a bounded subset of

the infinite strip Λ. By the strong maximum principle we know that for the positive

time t = 1, it holds that ρδ(x, 1) < 1. Therefore for ε small enough

‖Sε(ηε)f‖∞ ≤‖f‖∞‖Sε(ηε)χδΩ‖∞ ≤ ‖f‖∞(‖Gε(1)− ρδ(1)‖∞ + ‖ρδ(1)‖∞)

≤‖f‖∞(ω(ε) + ‖ρδ(1)‖∞) < α‖f‖∞, α < 1,
(4.37)

where we have used (4.35) for t = ηε.

Proof of Proposition 4.2. Let hε : Λ × S1 × [0, T ] the solution of (4.31). We use the

Hilbert expansion technique to prove that hε converges to the solution of the heat

equation (4.32). We search hε of the form

hε(x, v, t) = h(0)(x, t) +
+∞∑
k=1

(
1

ηε

)k
h(k)(x, v, t),

with coefficient h(k) not depending on ηε. By imposing that hε solves (4.31) and

comparing terms of the same order we find the identity Lh(0)(x, t) = 0 and the chain

of equations

v · ∇xh
(0) =Lh(1)

∂th
(k) + v · h(k+1) =Lh(k+2) for k ≥ 0.

We impose that h(0) satisfy the same initial condition of the whole solution hε, namely

h(0)(x, 0) = ρ0(x).

Let us start from the first equation (i) v · ∇xh
(0) = Lh(1). Thanks to the Fredholm

alternative and by proceeding as in the proof of Theorem 1.2, we can solve equation (i)

if and only if the left hand side belongs to (KerL)⊥ = {h ∈ L2(S1) s. t.
∫
S1 dv h(v) =

0}. Since v ·∇xh
(0)(x) is an odd function of v, it belongs to (KerL)⊥. So we can invert

the operator L finding

(4.38) h(1)(x, v, t) = L−1(v · ∇xh
(0)(x, t)) + ζ(1)(x, t).
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where ζ(1)(x, t) is a function to be determined in the kernel of L. Recall that L−1

preserves the parity.

We integrate the second equation (ii) ∂th
(0) + v · ∇xh

(1) = Lh(2) with respect

to the uniform measure on the sphere S1. Thanks to the equation (4.38) and the

observations that
∫
S1 dvLh(2) = 0 and

∫
S1 dv v · ∇xζ

(1)(x, t) = 0, it holds

(4.39)
1

2π

∫
S1

dv ∂th
(0)(x, t) + v · ∇x(L−1v · ∇xh

(0)(x, t)) = 0.

As in the proof of Theorem 1.2 defining Di,j = 1
2π

∫
S1 dv vi(−L−1)vj, we find that the

diffusion coefficient D is given by the formula (4.33)

D =
1

4π

∫
S1

dv v · (−L)−1v

so that the heat equation for h(0) is

(4.40) ∂th
(0) −D∆xh

(0) = 0.

hε(x, v) has to satisfy the reflective boundary condition hε(x, v
′, t) = hε(x, v, t) on

∂ΛE. By imposing it on the first term h(1)(x, v, t) = h(1)(x, v′, t) for every x ∈ ∂ΩE,

v · n < 0, we obtain proceeding in the same way of the proof of Theorem 1.2 that

h(0)(x, t) has to satisfy the Neumann boundary conditions ∂nh
(0)(x, t) = 0, for all

x ∈ ∂ΛE.

We have so shown that the term h(0)(x, t) solves the problem

(4.41)


∂th

(0) −∆xh
(0) = 0 x ∈ Λ

h(0)(x, 0) = ρ0(x) x ∈ Λ

∂nh
(0)(x, t) = 0 x ∈ ∂ΛE.

In particular h(0)(t) ∈ L∞(Λ× S1) for any t ≥ 0.

The equation (4.40) allow us to verify that when integrating the equation (ii) the

left hand side vanishes. It implies that we can invert operator L finding

(4.42)

h(2)(x, v, t) = L−1(∂th
(0)(x, t)+v ·∇x(L−1(v ·∇xh

(0)(x, t)))+v ·∇xζ
(1)(x, t))+ζ(2)(x, t),

where ζ(2)(x, t) is a function in KerL.

Next equation is (iii) ∂th
(1) + v ·∇xh

(2) = Lh(3). When integrating it with respect

to the uniform measure on S1, we exploit the fact that the operator L−1 preserves

the parity. So, substituting h(1) and h(2) with their expressions given by (4.38) and

(4.42), the only terms surviving give the equation for ζ(1)

(4.43) ∂tζ
(1)(x, t)−D∆xζ

(1)(x, t) = 0.
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Since there are no restrictions on the choice of the initial condition for ζ(1), we fix

ζ(1)(x, 0) = 0. So ζ(1)(x, t) ≡ 0 for any (x, t) and the expression for h(1) reduces to

h(1)(x, v, t) = L−1(v · ∇xh
(0)(x, t)).

By the Lemma 4.1 and the smoothness of h(0) we have

sup
t∈[0,T ]

‖h(1)(t)‖∞ ≤ C sup
t∈[0,T ]

‖∇xh
(0)(t)‖∞ < +∞.

In the same way, by Lemma 4.1 and smoothness of h(0) it follows that the first

term in the expression of h(2), i.e. h
(2)
1 = L−1(∂th

(0)(x, t)+v ·∇x(L−1(v ·∇xh
(0)(x, t)))),

is in L∞([0, T ];L∞(Λ× S1)), as well as its spatial derivatives.

Observe now that the left hand side of equation (iii) has null integral on S1 due

to (4.43). By inverting L we obtain the formula for h(3)

h(3)(x, v, t) =L−1(∂th
(1) + v · ∇xh

(2)(x, v, t)) + ζ(3)(x, t)

=L−1(∂tL−1(v · ∇xh
(0)(x, t)) + v · ∇x(h

(2)
1 (x, v, t) + ζ(2)(x, t))) + ζ(3)(x, t),

(4.44)

where ζ(3) ∈ KerL. We integrate now the equation (iv) ∂th
(2) + v · ∇xh

(3) = Lh(4)

with respect to the uniform measure on S1. We find the equation for ζ(2)(x, t)

(4.45) ∂tζ
(2) −D∆xζ

(2) = S(x, t),

where the source S(x, t) is given by

S(x, t) =− 1

2π

∫
S1

dv v · ∇xL−1(∂tL−1(v · ∇xh
(0)(x, t)))

− 1

2π

∫
S1

dv v · ∇xL−1(v · ∇xh
(2)
1 (x, v, t))).

We consider as initial datum ζ(2)(x, 0) = 0, so we have ζ(2) ∈ L∞([0, T ];L∞(Λ)) and

its spatial derivative as well, since S ∈ L∞([0, T ];L∞(Λ)).

We write the the expansion truncated at order η−2
ε for the solution:

(4.46) hε(x, v, t) = h(0)(x, t) +
1

ηε
h(1)(x, v, t) +

1

η2
ε

h(2)(x, v, t) +
1

ηε
Rηε(x, v, t).

We have shown that h(i)(t) ∈ L∞(Λ× S1) for i = 0, 1, 2. Now we have to prove that

even,the remainder Rηε is in L∞.

The remainder Rηε satisfies the equation

(4.47) (∂t + ηεv · ∇x)Rηε = η2
εLRηε − Tηε
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with initial condition

Rηε(x, v, 0) = −h(1)(x, v, 0)− 1

ηε
h(2)(x, v, 0)

and boundary conditions

Rηε(x, v
′, t) = Rηε(x, v, t) x ∈ ∂ΛE, v · n < 0.

The term Tηε on the left hand side of (4.47) is Tηε = ∂th
(1) + 1

ηε
∂th

(2) + v · ∇xh
(2). So

Tηε ∈ L∞([0, T ];L∞(Λ×S1)) and thanks to the smoothness hypothesis on ρ0 also the

initial datum Rηε(x, v, 0) belongs to L∞.

By denoting by Sηε(t) the semigroup associated to the generator ηε(v · ∇x − ηεL)

with reflective boundary conditions on ∂ΛE, the equation (4.47) becomes

Rηε(t) = Sηε(t)Rηε(0) +

∫ t

0

ds Sηε(t− s)Tηε(s).

By means of the series expansion found in (4.35), the solution can be written in the

following way:

Rηε(x, v, t)=
∑
m≥0

e−2λη2ε t(ληε)
m

∫ ηεt

0

dt1 . . .

∫ m−1

0

dtm

∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmRηε(0)(Φ−ηεt(x, v))

+

∫ t

0

ds
∑
m≥0

e−2λη2ε(t−s)(ληε)
m

∫ ηε(t−s)

0

dt1 . . .

∫ m−1

0

dtm

∫ 1

−1

dδ1 . . .

∫ 1

−1

dδmTηε(0)(Φ−ηε(t−s)(x, v), s).

Therefore we can estimate

sup
t∈[0,T ]

‖Rηε(t)‖∞ ≤ ‖Rηε(0)‖∞ + T sup
t∈[0,T ]

‖Tηε(t)‖∞ ≤ C < +∞.

So the remainder is uniformly bounded too. Hence from the estimates and (4.46) it

follows that hε converges to h(0) in L∞ for ηε →∞.
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Chapter 2

Random Walk

We consider a 2D finite rectangular lattice where a rectangular fixed obstacle is

present. We consider particles performing a simple symmetric random walk and we

study numerically the residence time behavior. We give a complete interpretation

of the resulting residence times, even by constructing the reduced 1D picture of the

lattice: a simple symmetric random walk on an interval with two singular sites, that

mimics the 2D case. We calculate the residence time for this 1D model via Monte

Carlo simulations, finding good correspondence between the results of the 1D and

the 2D model. Finally we produce exact calculation of the residence time for the 1D

model.

2.1 The 2D model

A particle performs a symmetric simple random walk on the 2D strip Λ made of the

points (x1, x2) with x1 = 1, . . . , L1 and x2 = 1, . . . , L2. The 1 and the 2 directions

are respectively called horizontal and vertical. The particle starts at a site in the first

column on the left, namely, at a site (1, x2) with x2 = 1, . . . , L2 chosen at random

with uniform probability. At each time step the particle performs a move to one of

the four neighboring sites with the same probability 1/4. If the target site is in the

horizontal boundary, made of the sites (x1, 0) and (x1, L2 + 1) with x1 = 1, . . . , L1,

the particle does not move, which means that the horizontal boundary is a reflecting

surface. If the target site belongs to the left or to the right vertical boundary, that is

to say it is of the form (0, x2) or (L1 +1, x2) with x2 = 1, . . . , L2, the particle exits the

system and the walk is stopped. Moreover, we shall consider a rectangular obstacle

inside the strip, in the sense that, when one of the sites of this region will be chosen

as target site for the move of the particle, the particle will not move. Thus, all the
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sites in the obstacle are not accessible to the walker. The width and the height of the

obstacle will be denote, respectively, by W and H.

Figure 1.1: A possible trajectory in blue: when a particle tries to jump on a site

occupied by the obstacle or by the horizontal boundary, it does not move (red arrows).

As for the case of the linear Boltzmann dynamics, the residence time is defined

as the mean time that the particle started at a uniformly chosen random site with

abscissa x1 = 1 takes to exit the strip through the right boundary. Sometimes, we

shall address to the residence time as to the total residence time to stress that it

refers to the total time that the particle spends inside the strip. More precisely, one

could consider the walk on the infinite strip Z× {1, . . . , L2} and define the residence

time as the mean of the first hitting time for a particle started at a site (1, x2), with

x2 = 1, . . . , L2 chosen at random with uniform probability, to the set of sites with

x1 = L1 + 1 conditioned to the event that the particle reaches such a subset before

visiting the set of sites with abscissa x1 = 0.

We shall compute the residence time by simulating many particles and averaging

the time that each of them needs to exit, paying attention to the fact that only

those particles which effectively exit through the right boundary will contribute to

the average, whereas those exiting through the left boundary will be discarded.

Similarly to the case discussed in Section 1.3 we find that the residence time is

not monotonic with respect to the geometrical parameters of the obstacle, such as

its position and its size. We show, also, that obstacles can increase or decrease the

residence time with respect to the empty strip case depending on their side lengths and

on their position. In some cases, one of these parameters controls a transition from

the increasing to the decreasing effect. We stress that in some cases discussed later the

residence time measured in presence of an obstacle is smaller than the one measured

for the empty strip, that is to say, the obstacle is able to select those particles that

cross the strip faster.
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We now discuss our results for different choices of the obstacle and we postpone a

possible interpretation to the end of this section. The geometrical parameters of the

strip are L1 = 200 and L2 = 50. All the details about the numerical simulations are

in the figure captions. The statistical error, since negligible, is not reported in the

picture.
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Figure 1.2: Residence time vs. obstacle height. The obstacle is placed at the center of

the strip and its with width is W = 2 (disks). W = 20 (triangles), W = 40 (squares),

and W = 60 (diamonds). Simulation parameters: L1 = 200, L2 = 50, total number

of inserted particles 5 · 107. The total number of particles exiting through the right

boundary decreases when the obstacle height is increased from 2.49 ·105 (empty strip)

to 1.69 ·105 (disks), 0.99 ·105 (triangles), 0.68 ·105 (squares), and 0.52 ·105 (diamonds).

The dashed line at about 26930 represents the value of the residence time measured

for the empty strip.

In Figure 1.2 we plot the residence time as a function of the obstacle height. The

obstacle is placed at the center of the strip and its width is W = 2 (disks), W = 20

(triangles), W = 40 (squares), and W = 60 (diamonds). In the case of a thin barrier,

starting from the empty strip value, the residence time increases with the height of the

obstacle. For a wider obstacle, an a priori not intuitive result is found: the dependence

of the residence time on the obstacle height is not monotonic. In the case W = 20,

starting from the empty strip value, the residence time decreases up to height 20 and

then increases to values above the empty strip one. This effect is even stronger if the

width of the obstacle is further increased.

In Figure 1.3 the residence time as a function of the obstacle width is plotted.

The obstacle is placed at the center of the strip and its height is H = 40. When the
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Figure 1.3: Residence time vs. obstacle width. The obstacle is placed at the center of

the strip and its height is H = 40. The total number of particles exiting through the

right boundary decreases when the obstacle width is increased from 2.49 · 105 (empty

strip) to 0.5 · 105. The parameters of the simulation and the dashed line are as in

Figure 1.2.

barrier is thin the residence time is larger than the one measured in the empty strip

case, but, when the width is increased, the residence time decreases and at about 26

it becomes smaller than the empty case value. The minimum is reached at about 120

(recall the the length of the strip is L1 = 200 in this simulation), then the residence

time increases to the empty strip value which is reached when the obstacle is as long

as the entire strip. This is indeed obvious, since in such a case the lattice is made of

two independent channels having the same length as the original strip.

In Figure 1.4 a centered square obstacle is considered. The residence time as a

function of its side length is reported. Although small oscillations, reasonably due

to numerical approximations, are visible, the behavior appears to be monotonically

decreasing.

Finally, in Figure 1.5 we show that, and this is really surprising, the residence

time is not monotonic even as a function of the position of the center of the obstacle.

Disks refer to a squared obstacle of side length 40, whereas triangles refer to a thin

rectangular obstacle with widthW = 2 and heightH = 40. In both cases the residence

time is not monotonic and attains its minimum value when the obstacle is placed in

the center of the strip. In the squared obstacle case, when the abscissa of the center of

the obstacle lies between 75 and 125 the residence time in presence of the obstacles is

smaller than the corresponding value for the empty strip. On the other hand, for the
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Figure 1.4: Residence time vs. squared obstacle side length. The squared obstacle is

placed in the middle of the strip. The total number of particles exiting through the

right boundary decreases when the obstacle side length is increased from 2.49 · 105

(empty strip) to 0.63·105 for side length equal to 46. The parameters of the simulation

and the dashed line are as in Figure 1.2.
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Figure 1.5: Residence time vs. position of the center of the obstacle. Disks refer to a

squared obstacle with side length 40, whereas triangles refers to a rectangular obstacle

with width W = 2 and height H = 40. The total number of particles exiting through

the right boundary is approximately 1.24 · 105 (disks) and 2.01 · 105 (triangles) and

depends poorly on the obstacle position. The parameters of the simulation and the

dashed line are as in Figure 1.2.
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thin rectangular obstacle, even if the non–monotonic behavior is found, the residence

time is always larger than in the empty strip case. This fact is consistent with the

results plotted in Figure 1.2.

The results that we found in the numerical experiments reported in Figures 1.2–1.5

can be summarized as follows: the residence time strongly depends on the obstacle

geometry and position. In particular it seems that large centered obstacles favor the

selection of particles crossing the strip faster than in the empty strip case.

In order to explain our observations, as we made in Section 1.3, we partition the

strip into three parts: the rectangular region on the left of the obstacle, the rectangular

region on the right of the obstacle and the remaining central part containing the

obstacle. As we will see later, the residence time behavior is consequence of two

effects in competition: the total time spent by the particles in the channels between

the obstacle and the horizontal boundary is smaller than the total time spent in the

central part of the strip in the empty case. On the contrary, the total time spent both

in the left and in the right part of the strip is larger with respect to the empty case.

Both these two effects can be explained remarking that, when the obstacle is present,

it is more difficult for the walker to enter the central region of the strip, namely, one of

the channels flanking the obstacle. The total residence time trend depends on which

of the two effects dominates the dynamics of the walker.

 0  50  100  150  200 0

 25

 50

 0

 3

 6

 9

lo
ca

l r
es

id
en

ce
 t

im
e

x1

x2

lo
ca

l r
es

id
en

ce
 t

im
e

Figure 1.6: Mean time spent by the walker crossing the strip in each site of the strip

(local residence time) for the empty strip case (black) and in presence of the obstacle

(gray). Data are those of the experiment described by the disks in Figure 1.5. The

obstacle is a squared obstacles with side length 40 placed at the site with abscissa 60.
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Figure 1.7: Total residence time in the left (circles), central (squares), and right

(triangles) part of the strip in presence of the obstacle (gray) and in the empty strip

case (black). The experiment associated with the disks in Figure 1.5 is considered.

To illustrate our interpretation of the phenomenon we describe in detail the walker

behavior referring to the experiment associated with the disks in Figure 1.5. In

Figure 1.6 we plot the mean time spent by the walker crossing the strip in each site

of the strip. This quantity will be addressed as the local residence time. The gray

surface in the picture refers to the obstacle case, whereas the black surface is related

to the empty strip case. The data in the picture have been collected in the case in

which the center of a squared obstacle with side length 40 is placed at the site with

coordinates (80, 25). The graph shows that in average in each site of the strip the

particle spends a time larger than the time it spends at the same site in the empty

strip case. This seems to be in contrast with the fact that the (total) residence time

in the strip can be smaller when the obstacle is present. Indeed, this can happen since

the sites of the strip falling in the obstacle region are never visited by the walker. It

can then happen that the sum of the local residence times associated with sites in

the central part of the strip in presence of the obstacle is smaller than the same sum

computed in the empty strip case.

Results in Figure 1.6 can be interpreted as follows. The local residence times in

the left and in the right regions are larger with respect to the empty case since for the

particle it is more difficult to access the central region and, thus, it will spend more

time in the lateral parts of the strip. On the other hand, once the particle enters into

one of the two central channels, it will take in average the same time to get back to

one of the two lateral parts of the strip that it would take in absence of the obstacle.
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But, since, the number of the available sites in the central part is smaller when the

obstacle is present, the local residence time will be larger.

The Figure 1.6 gives some new insight in the motion of the walker, but it is not

sufficient to explain the residence time behavior discussed above. In order to get some

in- sight into this, we compute the respective times spent by the particle in the left,

central and right region of the strip. This is done in Figure 1.7, where data referring

to the experiment associated with the disks in Figure 1.5 are reported. First, one

should note that the total residence time in the left and in the right part of the strip

are increased when the obstacle is present, this is due to the fact that for the particle

it is more difficult to enter the central part when the obstacle is present. Moreover,

precisely for the same reason the trajectory of the walker from its starting point to its

exit from the strip will visit the channels in the central region of the strip a number

of time smaller than the number of times that the particle visits the central region of

the strip in the empty strip case. Thus, the residence time in the central part of the

strip results to be smaller when the obstacle is present.

Hence, the behavior of the (total) residence time data reported as disks in Fig-

ure 1.5 can be explained as follows: if the center of the obstacle is close to the left

boundary (say its abscissa is smaller than 75) the effect in the right region of the strip

dominates the one in the central region and the (total) residence time is increased (the

effect in the left region in this case is negligible). On the other hand, if the center of

the obstacle is close to the center of the strip (say its abscissa is between 75 and 125)

the effect in the central region dominates and the (total) residence time is decreased.

Finally, if the center of the obstacle is close to the right boundary (say its abscissa

is larger than 125) the effect in the left region of the strip dominates the one in the

central region and the (total) residence time is increased (the effect in the right region

in this case is negligible).

The behavior of the residence time in connection with all the experiments illus-

trated in Figures 1.2–1.5 can be explained similarly.

2.2 The 1D model

In this section we propose a one–dimensional reduction of the problem based on a

symmetric simple random walk with two defect sites. We actually prove that the

behaviors of the 1D system are similar to those discussed above and that the Monte

Carlo data are fully supported by exact analytical computations.

We consider a simple random walk on {0, 1, . . . , L}. The sites 0 and L are absorb-
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ing, so that when the particle reaches one of these two sites the walk is stopped. All

the sites 1, . . . , L − 1 are regular excepted for two sites called defect or special sites.

The first or left defect site is the site n+1 and the second or right defect site is the site

n+ h+ 2, with n = 1, 2, . . . , L− 5 and h = 1, 2, . . . , L−n− 4. The parameters n and

h are chosen in such a way that the left defect site cannot be 1, the right defect site

cannot be L− 1, and there is at least one regular site separating the two defect sites.

The number of regular sites on the left of the left defect site is n and the number of

regular sites in the region between the two defect sites is h. We let w = L−(n+h+3)

be the number of regular sites on the right of the right defect site.

At each time step the walker try to move with the following rule: if it is on a

regular site, then it jumps to its left or to its right with probability 1/2. If it is at

the left defect site it jumps with probability λ to the right, with probability 1− λ− ε
to the left, and with probability ε it does not move. If it is at the right defect site it

jumps with probability λ to the left, with probability 1− λ− ε to the right, and with

probability ε it does not move. Here, λ ∈ (0, 1) and ε ∈ [0, 1).

The array 1, . . . , L−1 will be called the lane. The sites 0 and L will be, respectively,

called the left and right exit of the lane.

1 2 ... n n+ 1 n+ 2 ... n+ h
n+ h

+2
L− 1

λ1− λ− ε 1− λ− ελ

Figure 2.8: The lane. Particles on the singular sites n+ 1 and n+ h+ 2 do not move

with probability ε.

This 1D model is a toy model for the 2D system that we have discussed in Sec-

tion 2.1. Indeed, the left defect site n+1 mimics the sites in the first column of the 2D

strip on the left of the obstacle: the 2D walker in such a column has a probability to

move to the right smaller than the probability to move to the left. Similarly, the right

defect site n+ h+ 1 mimics the sites in the first column to the right of the obstacle.

It is important to stress that the sites n+ 1 + 1, . . . , n+h are regular, since when the

2D walker enters one of the two channels flanking the obstacle its probability to move

to the right is equal to that to move to the left.

In this framework the residence time is defined by starting the walk at site 1 and

computing the typical time that the particle takes to reach the site L provided the

walker reaches L before 0. In other words we compute the time that the particle

takes to exit the lane through the right exit. More precisely, we let xt be the position
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of the walker at time t and denote by Pk and Ek the probability associated to the

trajectories of the walk and the related average operator for the walk started at x0 = k

with k = 1, . . . , L− 1. We let

(2.1) Ti = inf{t > 0, xt = i}

be the first hitting time to i, with the convention that Ti =∞ if the set {t > 0, xt = i}
is empty, i.e., the trajectory does not reach the site i. The main quantity of interest

is the residence time or total residence time

(2.2) R = E1[TL|TL < T0] =
∞∑
t=1

tP1[TL = t|TL < T0] .

Note that the residence time is defined for the walk started at x0 = 1 and the average

is computed conditioning to the event TL < T0, namely conditioning to the fact that

the particle exits the lane through the right exit.

As in the 2D case discussed in Section 2.1, we shall compute numerically the

residence time by simulating many particles and averaging the time that each of

them takes to exit through the right ending point, discarding all the particles exiting

through the left ending point. But we stress that in this 1D model it is also possible

to compute exactly the residence time. In this section we shall discuss our findings

and in each plot the solid lines will represent the exact result which will be discussed

in the following Section 2.3.

We now discuss our results for different choices of the parameter which are the

analog of the cases considered in Section 2.1 for the 2D model. All the details about the

numerical simulations are in the figure captions. The statistical error, since negligible,

is not reported in the picture. The simulation are carried out with the following choice

of the parameters:

(2.3) ε =
1

2
p and λ =

1

2
(1− p)

with p ∈ [0, 1), so that ε ∈ [0, 1/2) and λ ∈ (0, 1/2]. Note that with such a choice the

probability to move left (resp. right) for the particle sitting at the left (resp. right)

defect site is 1 − λ − ε = 1/2. Note that for p equal zero we recover the symmetric

simple random walk, which mimics the 2D empty strip.

The case reported in Figure 2.9 is the analog of the case discussed in Figure 1.2 in

the 2D setting. Indeed, the residence time is plotted as a function of the parameter

p increasing from 0 to 0.99 and this mimics the increase of the height of the obstacle

considered in Figure 1.2. Moreover, the two defect sites are symmetric with respect
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Figure 2.9: Residence time vs. p. Simulation parameters: total number of inserted

particles 5 · 107, L = 201, n = 98 and h = 2 (disks), n = 89 and h = 20 (triangles),

n = 79 and h = 40 (squares), and n = 69 and h = 60 (diamonds). The total number

of particles exiting through the right exit decreases, when p grows, from 2.48 · 105 (no

defect is present, namely, p = 0) to 1 · 105 (disks), 0.22 · 105 (triangles), 0.12 · 105

(squares), and 0.08 · 105 (diamonds), for p = 0.99. The dashed line at about 13465

represents the value of the residence time measured in absence of defect sites (p = 0).

The solid line is the exact solution.

to the middle point of the lane and the number of regular sites between them is

chosen equal to 2, 20, 40, and 60 mimicking the different obstacle widths considered

in Figure 1.2. The data show a behavior similar to that reported in Figure 1.2 in the

2D case: in the case h = 2 (the defect sites are close to each other) the residence time

increases with p. For a wider obstacle, the non–monotonic behavior is recovered. In

the case h = 20, starting from the empty strip value, the residence time decreases up

to p ∼ 0.55 and then it increases to values above the p = 0 case. This effect is even

stronger if p is further increased.

The case reported in Figure 2.10 is the analog of the case discussed in Figure 1.3

in the 2D setting. Indeed, the residence time is plotted as a function of the parameter

h increasing from 2 to 198 with the two defect sites symmetric with respect to the

middle point of the lane. This case mimics the increase of the width of the centered

rectangular obstacle reported in Figure 1.3. When h is small the residence time is

larger than the one measured for p = 0, but, when h is increased, the residence time

decreases and at about 25 it becomes smaller than the p = 0 case. The minimum is

reached at about 120 (recall the lane is long 201 sites in this simulation), then the
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Figure 2.10: Residence time vs. h (even) for p = 0.84, L = 201, n = (L − h − 3)/2,

and total number of inserted particles 5 · 107. The dashed and the solid lines are as

in Figure 2.9. The total number of particles exiting through the right exit decreases

when h is increased from 2.31 · 105 for h = 2 to 0.41 · 105 for h = 194.

residence time increases towards the p = 0 value.

In this 1D setting it is not really clear how to construct an analog for the experi-

ment in Figure 1.4, where a squared centered obstacle was considered. On the other

hand, the case reported in Figure 2.11 is the analog of the case discussed in Figure 1.5

in the 2D setting. Indeed, the residence time is plotted as a function of the parameter

n in the two cases h = 40 (disks) and h = 2 (triangles). This case mimics the increase

of the abscissa of the center of the obstacle reported in Figure 1.5. In both cases the

residence time is not monotonic and attains its minimum value when the defect sites

are symmetric with respect to the center of the lane. In the h = 40 case, when n lies

approximately between 50 and 110 the residence time is smaller than the correspond-

ing value for the case p = 0. On the other hand, for h = 2, even if the non–monotonic

behavior is recovered, the residence time is always larger than the one measured in

the p = 0 case. This fact is consistent with the results plotted in Figure 2.9.

In order to explain our findings, similarly to what we did in the 2D case, we

partition the lane into three parts: the part of the lane on the left of the left defect

(left region), the part of the lane between the two defect sites (central region), and the

part of the lane on the right of the right defect (right region). As in the 2D case, the

residence time behavior is consequence of two effects in competition: the total time

spent by the particles in the central region is smaller than the total time spent in the

same region in absence of defect sites (p = 0). On the contrary, the total time spent
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Figure 2.11: Residence time vs. n for p = 0.84, L = 201, h = 40 (disks), h = 2

(triangles), and total number of inserted particles 5 · 107. The dashed and the solid

lines are as in Figure 2.9. The total number of particles exiting through the right exit

is approximatively equal to 1.2 · 105 (disks) and 2.3 · 105 (triangles).

both in the left and in the right region is larger with respect to the time spent there

in the p = 0 case. Both these two effects can be explained remarking that, in presence

of defect sites, it is more difficult for the walker to enter the central region of the

lane. The total residence time trend depends on which of the two effects dominates

the dynamics of the walker.

These remarks are illustrated in Figure 2.12, data referring to the experiment

associated with the disks in Figure 2.11 are reported. Again, one notes that the total

residence time in the left and in the right regions of the lane are increased when the

defect sites are present, this is due to the fact that for the particle it is more difficult

to enter the central region in such a case. Moreover, precisely for the same reason the

trajectory of the walker from its starting point 1 to its exit from the lane will visit the

central region of the lane a number of time smaller than the number of times that the

particle visits such a region in the p = 0 case. Thus, the residence time in the central

region results to be smaller in presence of the defect site. Finally, similarly to what we

did in the 2D case, the results in Figure 2.12 allows a complete interpretation of the

residence time behavior depicted by the disks in Figure 2.11 (note that the maximum

value of the variable n for the disks in Figure 2.11 is 150).
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Figure 2.12: Total residence time in the left (circles), central (squares), and right

(triangles) region of the lane in presence of the defect sites (gray) and in the p = 0

case (black). The experiment associated with the disks in Figure 2.11 is considered.

2.3 Analytic results

In this section we derive exact, though not explicit, expressions for the residence time

defined in Section 2.2. To compute the residence time, we shall make use of the

following result on a five state chain: the states are S, A, B, C, and D. The jump

probabilities are as depicted in the figure 3.13 and the chain is started at time 0 in

B. We prove that the probability Qk, with k ≥ 1, for the chain to reach D before S

and return k − 1 times to the site B before reaching D is

(3.4) Qk = pBpC [rB + qBpA + pBqC ]k−1 ,

where rB = 1− (pB + qB). Indeed,

Qk = pBpC

k−1∑
r=0

(
k − 1

r

)
(pBqC)k−1−r

r∑
s=0

(
r

s

)
(qBpA)s(rB)r−s

where r counts the number of times that, starting from B, the chain either jumps to

A or it stays in B and s counts the number of times that starting from B it jumps

to A. The equation (3.4) is then proven by using the binomial theorem. We now

consider again the 1D walk defined in Section 2.2. To compute the residence time we

introduce the local times, i.e., the time spent by a trajectory at site i defined as

(3.5) τi = |{t > 0, xt = i}|
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✛qB ✲pB
✛qA ✲pA ✛qC ✲pC

✲
rB=1−(pB+qB)

Figure 3.13: Schematic representation of the five state chain model.

for any i = 1, . . . , L− 1, where the cardinality | · | denotes the number of elements of

a set. Provided TL is finite, we have that

(3.6) TL =
L−1∑
i=1

τi .

Hence the residence time R defined in (2.2) can be expressed as

(3.7) R =
L−1∑
i=1

E1[τi|TL < T0]

and each term of the sum above can be proven to be

E1[τi|TL < T0] =
P1[Ti < T0]

P1[TL < T0]

pBpC
[1− (rB + qBpA + pBqC)]2

,(3.8)

where we defined the quantities

(3.9)

pA = Pi−1(Ti < T0), qA = Pi−1(T0 < Ti),

pB = Pi(x1 = i+ 1), qB = Pi(x1 = i− 1),

pC = Pi+1(TL < Ti), qC = Pi+1(Ti < TL).

Note that pA + qA = 1 and pC + qC = 1. Indeed, one has to average over all the

trajectories of the walk the random variable returning the total number of visits of

the site i. Hence, we have

E1[τi|TL < T0] =
∞∑
k=1

kP1[{i visited k times}|{TL < T0}]

and, using the definition of conditional probability and the Markov property,

E1[τi|TL < T0] =
∞∑
k=1

k
P1[{Ti < T0}]
P1[{TL < T0}]

Pi[{TL < T0} ∩ {k − 1 returns to i}] .
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The last probability appearing in the above expression is nothing but the quantity Qk

defined for the five state chain with the jump probabilities defined as in (3.9). Finally,

(3.8) follows by noting that

∞∑
k=1

kQk =
pBpC

[1− (rB + qBpA + pBqC)]2
.

Our strategy to compute the residence time is the following: for any i = 1, . . . , L−1

we shall compute E1[τi|TL < T0] identifying the correct values of pA, qA, pB, qB, pC ,

and qC to be used, whose definition depends on the choice of the site i. Finally, the

sum (3.7) will provide us with the residence time.

2.3.1 Residence time in the symmetric case

In the symmetric case, namely, ε = 0 and λ = 1/2, by using the gambler’s ruin result

we have that

(3.10) P1[T0 < TL] =
L− 1

L

and

(3.11) P1[TL < T0] =
1

L
.

This is a very classical problem in probability theory which can be found in any

probability text book, see, for example, [28, paragraphs 2 and 3, Chapter XIV].

The residence time computation, which, in the gambler language, is the average

duration of the game conditioned to the fact that the gambler wins, is not immediate.

We use the formulas (3.7)–(3.9) proven above by defining suitably the five state chain

jump probabilities. More precisely, pA = (i − 1)/i is given by (3.10) with the initial

point 1 replaced by i − 1 and L replaced by i, qA = 1/i is similarly given by (3.11),

pB = qB = 1/2 (and hence rB = 0), pC = 1/(L− i) is given by (3.11) with the initial

point 1 replaced by i+1 and L replaced by L− i, and qC = (L− i−1)/(L− i) is given

similarly by (3.10). Moreover, since from (3.10) it also follows that P1[TL < T0] = 1/L

and P1[Ti < T0] = 1/i, from (3.8) a straightforward computation yields

E1[τi|TL < T0] =
2

L
(Li− i2)

and, computing the sum in (3.7), we finally have

(3.12) R =
1

3
(L− 1)(L+ 1) .
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Figure 3.14: Residence time vs. L for the lane with no singular sites (symmetric case).

The solid line is the exact solution (3.12), whereas circles are the average results of

a Monte Carlo simulation with 5 · 108 particles started at the site 1. The squares

represent the average duration of a Monte Carlo simulation of the symmetric random

walk started from 0 and ended in L or −L, while the dashed line is the his expected

duration L2

In figure 3.14 the numerical estimate of the residence time in this symmetric case is

compared to the exact result (3.12) and with the numerical estimate of the mean time

that a symmetric walk started at 0 takes to reach either −L or +L. It is interesting to

remark that the mean time that a symmetric walk started at 0 takes to reach either

−L or +L is L2. This time can be computed as the average duration of the gambler’s

game. Thus, conditioning the particle to exit through the right end point decreases

by a multiplicative factor the mean time that the particle needs to reach the distance

L from the starting point, but it does not change the diffusive dependence on the

length L of the lane.

2.3.2 Crossing probability in the general case

We now come back to the general 1D model introduced in Section 2.2. As a first

step in the residence time computation, we have to calculate the crossing probability

P1[TL < T0] which appears at the denominator in (3.8). We first note that, by using

repeatedly the Markov property, one gets

(3.13) P1[T0 < TL] = 1− p1p2p3p4p5
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and, as a consequence

(3.14) P1[TL < T0] = p1p2p3p4p5

where

p1 = P1[T0 > Tn+1], p2 = Pn+1[T0 > Tn+2],

p3 = Pn+2[T0 > Tn+h+2], p4 = Pn+h+2[T0 > Tn+h+3],

p5 = Pn+h+3[T0 > TL].

The five probabilities p1, . . . , p5 can be computed explicitly and the remaining part

of this section is devoted to the computation of these quantities. For p1 one has to

use (3.11) with L replaced by n+ 1 to deduce that

(3.15) p1 =
1

n+ 1
.

To compute p2, we first note that, once the particle is in n, the probability to come

back to n+ 1 before reaching 0 is equal to n/(n+ 1), as it follows by using (3.10) with

the initial point 1 replaced by n and L replaced by n+ 1. Hence,

p2 =
∞∑
r=0

r∑
k=0

(
r

k

)[
(1− ε− λ)

n

n+ 1

]r−k
εkλ

where r counts the number of times that, starting from n+1, the walker either jumps

to n or it stays in n + 1 and k counts the number of times that the walker stays in

n+ 1. Using the binomial theorem, we get

(3.16) p2 =
λ

1− [(1− ε− λ)n/(n+ 1) + ε]
.

In order to compute p3, note that, using (3.10) and (3.11) with initial point

n + 2 and replacing L with h + 1, one has Pn+2[Tn+1 < Tn+h+2] = h/(h + 1) and

Pn+2[Tn+h+2 < Tn+1] = 1/(h+ 1). Hence,

(3.17) p3 =
1

h+ 1

∞∑
k=0

( h

h+ 1

)k
pk2 =

1

1 + h(1− p2)
,

where k counts the number of times that, starting from n+2, the walker reaches n+1

before n+ h+ 2.

To compute p4, we first need to calculate ξ = Pn+h+1[T0 > Tn+h+2]. Starting from

n+ h+ 1 the probability to reach n+ h+ 2 before n+ 1 is Pn+h+1[Tn+h+2 < Tn+1] =
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h/(h+ 1), where we used (3.10) with initial point n+ h+ 1 and L replaced by h+ 1.

Hence, Pn+h+1[Tn+1 < Tn+h+2] = 1/(h+ 1). Thus,

ξ =
h

h+ 1
+

1

h+ 1
p2

1

h+ 1

∞∑
k=0

(
p2

h

h+ 1

)k
where k counts the number of times that the walker returns to n + 1 after having

visited it for the first time. We have also used that Pn+2[Tn+1 < Tn+h+2] = h/(h+ 1).

With some algebra we find the expression

(3.18) ξ =
p2 + h(1− p2)

1 + h(1− p2)
.

Now, we have all the ingredients to compute p4. Indeed,

p4 = (1− ε− λ)
[ ∞∑
r=0

r∑
k=0

(
r

k

)
εk(λξ)r−k

]
where r−k counts the number of times that the walker starting from n+h+ 2 jumps

to n+h+1 and where k counts the number of times that the walker stays at n+h+2.

A simple calculation provides the result

(3.19) p4 =
1− ε− λ

1− (λξ + ε)
.

Finally, to compute p5 we remark that Pn+h+3[TL < Tn+h+2] = 1/(w + 1) and

Pn+h+3[Tn+h+2 < TL] = w/(w+ 1), as it can be deduced by (3.11) and (3.10) by using

as initial point the point n+ h+ 3 and replacing L by w + 1. Then,

(3.20) p5 =
1

w + 1

∞∑
k=0

( w

w + 1
p4

)k
=

1

1 + w(1− p4)
.

Finally, plugging the equations (3.15)–(3.20) in (3.14), we find the expression

(3.21) P1[TL < T0] =
λ

(1 + h)(1− ε− 2λ) + λL

for the probability that the particle started at the site 1 reaches L before visiting 0.

It is interesting to remark that in the case ε = 0 and λ = 1/2 the expression (3.11)

valid in the symmetric case is recovered.

2.3.3 Residence time in presence of defects

The last step, necessary to complete our algorithm to compute the residence time,

is that of listing the expression that must be used for the probabilities (3.9) for the
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different choices of i on the lattice. In this last section, in order to get simpler formulas,

we focus on the case that has been studied numerically, that is to say, we choose the

parametrization (2.3). First of all we note that the expression (3.21) of the probability

that the particle started at the site 1 reaches L before visiting 0 simplifies to

(3.22) P1[TL < T0] =
1− p

p(1 + h) + (1− p)L
.

The site i in the lattice can be chosen in nine possible different ways: in the bulk of

the three regions on the left, between and on the right of the defect sites, as one of the

four sites neighboring the defects and as one of the two defect site. We list only five

cases, the remaining four can be deduced exchanging the role of the parameters n and

w. Note that we shall only list either pA or qA and pC or qC ; the missing parameter

can be deduced by the equations pA + qA = 1 and pC + qC = 1.

Case 1 ≤ i ≤ n − 1. First note that P1[Ti < T0] = 1/i is given by (3.11) with

initial site 1 and L replaced by i. Moreover, pA = (i − 1)/i follows from (3.10) with

initial site i− 1 and L replaced by i. We trivially have that pB = qB = 1/2. Finally,

pC = (1− p)/[p(1 + h) + (1− p)(L− i)] follows from (3.22) with initial site i+ 1 and

L replaced by L− i.
Case i = n. First note that P1[Ti < T0] = 1/n is given by (3.11) with initial site 1

and L replaced by n. Moreover, pA = (n − 1)/n follows from (3.10) with initial site

n − 1 and L replaced by n. We trivially have that pB = qB = 1/2. Finally, we note

that qC has the same structure as p4, thus, by exchanging the role of n and w, from

(3.16), (3.18), and (3.20) we have that qC = 1/[2− p− (1− p)ζ] where

(3.23) ζ =
π + h(1− π)

1 + h(1− π)
and π =

1− p
2− p− w

w+1

.

Case i = n+ 1. First note that P1[Ti < T0] = 1/(n+ 1) is given by (3.11) with initial

site 1 and L replaced by n + 1. Moreover, pA = n/(n + 1) follows from (3.10) with

initial site n and L replaced by n. We trivially have that pB = (1−p)/2 and qB = 1/2.

Finally, we note that qC has the same structure as ξ, thus, by exchanging the role of

n and w, from (3.18) we have that qC = ζ, see (3.23).

Case i = n + 2. First note that P1[Ti < T0] = p1p2, hence, using (3.15) and (3.16),

an easy computation yields P1[Ti < T0] = (1 − p)/[(n + 1)(2 − p − n/(n + 1))] =

(1−p)/(2 +n−p(n+ 1)) since, with the parametrization that we are adopting in this

section

p2 =
1− p

2− p− n/(n+ 1)
.
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Moreover, pA = p2 by definition and pB = qB = 1/2. Finally, we note that qC has the

same structure as ξ with h replaced by h− 1. Thus, by exchanging the role of n and

w, from (3.18) we have that qC = [π + (h − 1)(1 − π)]/[1 + (h − 1)(1 − π)], with π

defined in (3.23).

Case n + 3 ≤ i ≤ n + h. First note that P1[Ti < T0] = p1p2p̄3, where p̄3 has

the structure of p3 with h replaced by i − (n + 2). Hence (3.17) gives us P1[Ti <

T0] = (p1p2)/(1 + (i − n − 2)(1 − p2)) with p1 and p2 as in the previous case.

Moreover, pA has the same structure as ξ with h replaced by i − n − 2 so pA =

(p2 + (i− n− 2)(1− p2))/(1 + (i− n− 2)(1− p2)) and pB = qB = 1/2. Finally, we

note that qC has the same structure as ξ with h replaced by n+ h+ 1− i. Thus, by

exchanging the role of n and w, from (3.18) we have that qC = [π+ (n+h+ 1− i)(1−
π)]/[1 + (n+ h+ 1− i)(1− π)], with π defined in (3.23).
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Chapter 3

Pedestrian dynamics in dark

regions

We introduce a simple lattice model without exclusion in order to study the motion

of pedestrians. The model, despite the basic rules of its dynamics, captures some

interesting features of the difficulties in obtaining an optimal strategy of evacuation

in a very difficult situation (no visibility, no external lead to the exits). We introduce

a buddying threshold (of no-exclusion per site) mimicking the tendency of pedestrians

to form groups (herding effect) and to cooperate. We examine how the dynamics of

the crowd is influenced by the tendency to form big groups. We observe that the more

the tendency to form large groups is present, i.e. the bigger the buddying threshold

is, the more the evacuation will be inefficient. We find very interesting results in the

investigation of how obstacles influence the dynamics. A strong asymmetry emerges

in the effect of the same obstacle placed in different position.

3.1 The model

This lattice model has been introduced in [17,18] by adapting some ideas introduced

in [3] to study the ionic currents in cell membranes and further developed in [4].

The lattice we consider is a finite square {1, 2, . . . , L} × {1, 2, . . . , L} ⊂ Z2 with

odd side length L. Inside this lattice square we may consider the presence of an

obstacle of size lo× lv, a rectangular subset of the previous square {xo, xo+1, . . . , xo+

lo − 1} × {xv, xv + 1, . . . , xv + lv − 1} such that 3 ≤ xo; xo + lo ≤ L − 1 and 3 ≤ xv;

xv + lv ≤ L − 1. We define as our domain Λ the set difference of the previous two

sets. In the sequel we will call Λ the corridor.

Let e1 = (1, 0) and e2 = (0, 1) denote the coordinate vectors in R2. Every element

61



x of Λ will be called a cell or site. The external boundary of the corridor is made of

four segments made of L cells each; the point at the center of one of these four sides,

e.g. the right side, is called exit. The sites, not belonging to Λ, on the boundary of

rectangular obstacle are called internal boundary.

We consider the motion of N individuals in the corridor Λ, so N will be a positive

integer. We consider the state space X = {0, . . . , N}Λ and for any state n ∈ X we

denote by n(x) the number of individuals at the site x. The model does not have an

exclusion rule: we do not control how many agents can be at a cell x. Although some

states of the system would be unlikely, in principle n(x) can be any integer in [0, N ]

for a generic site x.

We define a Markov chain nt on the finite state space X with discrete time t =

0, 1, . . . . The parameters of the process are the integer T ≥ 0 called threshold and

W ≥ 0 called wall stickiness. We finally define the function S : N→ N as

S(k) =

1 if k > T

k + 1 if k ≤ T

for any k ∈ N. Note that for k = 0 we have S(0) = 1.

When a particle try to move, it jumps on a nearest neighbor or it stays at rest

according to probabilities depending on the position of the particle and the state of

the system. The probabilities are defined as:

(1.1) p(x, y) =
w(x, y)

D(x)
, y ∈ {x, x+ e1, x− e1, x+ e2, x− e2}

where the denominator

D(x) = w(x, x) +
2∑
i=1

w(x, x+ ei) +
2∑
i=1

w(x, x− ei)

is just a factor to normalize the weights and obtain a probability, while the weights

w(x, y) take into account the position of the particle and the number of particles

present in the sites y.

For any cell x situated in the interior of the corridor Λ, i.e. if all the nearest

neighbors y of x are in Λ, y = x± ei, i = 1, 2, and for the state n ∈ X, we define

w(x, x) = S(n(x))

w(x, y) = S(n(y)).

The function S(·) will return a value dependent on our choice of the buddying thresh-

old T . It is worth stressing that T is a threshold in the probability that such a cell is
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likely to be occupied. If n(x) > T , so there are too much particles in the site x, the

function S(n(x)) will take value 1 and p(x, y) the value 1/D(x). This does not mean

that T acts as a threshold in n(x), the number of individuals per cell.

If the cell x is one of the four corners {(1, 1), (1, L), (L, 1), (L,L)} of the corridor

Λ, only two sites y among nearest neighbors of x are internal to Λ, while two sites z

are cells out of Λ on the boundary. For the state n ∈ X, we define the weights

w(x, x) = S(n(x)) + 2W

w(x, y) = S(n(y)) +W,

w(x, z) = 0.

In this case we are introducing the additional term W that is mimicking the stickiness

of the wall. That is this parameter takes into account the possibility that people prefer

to move nearby the wall in condition of lack of visibility.

Consider now the case in which the particle is on a cell that has a neighbor site on

the external or on the internal boundary. For x ∈ Λ neighboring the boundary (but

neither in the corners, nor neighboring the exit), y nearest neighbors in Λ, z nearest

neighbor out of Λ on the boundary and for the state n ∈ X, we define the weights

w(x, x) = S(n(x)) +W

w(x, y) = S(n(y)) if y is in the interior of Λ

w(x, y) = S(n(y)) +W, for y neighboring the boundary Λ

w(x, z) = 0.

Finally, we have to define the weights if x is the site in Λ neighboring the exit. We

propose two different choices mimicking two different situations. If the exit is clearly

identifiable when particles are in the closest cell, we should consider particles to exit

with probability 1. We will call this case sure exit.

If the exit is not clearly identifiable, we altough assume it is the most likely site to

jump to and we treat it as if it were occupied by the threshold number of pedestrians.

More precisely, in this case for n ∈ X, we define the weights

w(x, x) = S(n(x))

w(x, y) = S(n(y)) if y is in the interior of Λ

w(x, y) = S(n(y)) +W, for y neighboring the boundary Λ

w(x, exit) = T + 1.

We will call this case threshold exit.
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Note that if we consider the threshold to be 0 (so pedestrians are not attracted by

other people), we recover particles moving via independent symmetric random walks.

In the sequel until explicitly stressed out we are firstly considering the case of

absence of the obstacle into the square lattice. All the simulations are for L = 101.

3.2 Parallel vs. serial update

We consider at the initial time t = 0 the N particles to be located randomly in the

corridor Λ. We draw the initial position of each particle on the cell chosen randomly

with uniform probability 1/(L2− lolv), where lolv is the number of cells occupied by of

the obstacle. Let us consider the first time step: all the probabilities p(x, y) governing

the jumps of each particle are defined by (1.1) looking at the state of the system at

time t = 0. We propose two different definitions of the dynamics. As the first case,

we consider all the particles to update their position simultaneously at each time step

(parallel update). The second possibility is to consider just one particle to update

its position at each time step (serial update). That is in this second case we draw at

each time a particle uniformly among the N in Λ and we let it evolve its position.

Note that to have comparable results we have to rescale the time interval in the

serial update case as follows: observing that in the case of parallel rule we let all N

particles update their position, we consider as the new unit of time t′ = Nt. In this

way after a unit time in both cases, parallel and serial update, we consider N updates

in particles positions. This choice reflects the idea that at each time we consider all

the pedestrians to have the possibility to move one step.

In the sequel all the data plot for the serial update case will refer to the time unit

t′, so we will omit to stress it again.

We want to compare the behavior of the system in these two different cases,

focusing on the average outgoing flux. This is defined as the ratio between the number

of particles that exited the corridor in the time interval [0, tf ] and the time tf . In the

simulation we use tf = 107. To study the overall exit flux we consider the stationary

case in which the same number of particles is present in the corridor at every time.

This means that when a particle finds the exit and goes out from the lattice, we insert

a new one at the center of the opposite side of the lattice.

Let us consider as the first case the square lattice with no obstacle and the wall

interaction W = 0. In figure 2.1 we show the stationary average flux for different

choices of the threshold T = 0, 2, 5, 30, 300 and some values of N between 50 and

10000, for particles evolving following the parallel update rule and for the two different
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choices of the exit rule that we previously described. We can stress some evidences.

As one should expect, the choice of the sure exit favors the outgoing flow. Indeed,

in this case the particles in front of the exit go always out of Λ at the first next update

of their position, while in the other case they can remain in Λ with probability bigger

than 0. This is clearly visible for the case of T = 0, 2, but it is not so evident for

choices of larger threshold. In figure 2.2 is presented a comparison between the data

for the two different exit rules, for the values of the threshold T = 5, 30, 300. Since

in the figure the black and the grey symbols for large values are indistinguishable,

this picture shows that the difference between the two cases tends to vanish when T

grows.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2000  4000  6000  8000  10000

ou
tg

oi
ng

 f
lu

x

number of individuals

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2000  4000  6000  8000  10000

ou
tg

oi
ng

 f
lu

x

number of individuals

Figure 2.1: Averaged outgoing flux vs. number of pedestrians. The symbols

+, ×, ∗, the squares and the circles represent respectively the cases T = 0, 2, 5, 30, 300,

with L = 101, W = 0 and parallel update. The solid line has been obtained by fitting

the Monte Carlo data corresponding to the case T = 0. On the left we show the

simulation results for the choice of the sure exit, on the right the data refer to the

threshold exit.

This fact can be explained as the consequence of our choice of the probability for

a particle to go out in the case of the threshold exit. Indeed we can notice that in

the case of small values of T , think for instance to 0 or 2, the weight we assign to

the exit site, that is T + 1, is comparable to the weight of the nearest neighbor, so

particles close to the exit often jump to one of the other sites. This effect is reduced

if the value of T grows, since in that case the weight of the exit site is likely to be

significantly larger than that one of the nearest sites, so the behavior of the system

becomes really close to that one of the system in the case of sure exit.

This remark explains another phenomenon observed in figure 2.1 and stressed in

the zoom in figure 2.3. If we consider the threshold exit rule, for small values of N , the
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Figure 2.2: Averaged outgoing flux vs. number of pedestrians. We show a

comparison of the simulation results for T = 5 (∗), 30 (squares), 300 (circles), in the

case of sure exit (in black), and in the case of threshold exit (in gray). Note that gray

and black circles and squares are overlapping.
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Figure 2.3: Averaged outgoing flux vs. number of pedestrians. The symbols

+, ×, ∗, the squares and the circles represent respectively the cases T = 0, 2, 5, 30, 300,

with L = 101, W = 0 and parallel update. The solid line has been obtained by fitting

the Monte Carlo data corresponding to the case T = 0. The data refer to the a zoom

for N ≤ 3000 of the case of threshold exit (figure 2.1, right picture).

average outgoing exit flux has a small increment in the case of large threshold with
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respect to the independent random walk case (T = 0). This is due to the fact that in

a regime of small number of particles, it is really unlikely to have many particles on

the nearest neighbors of the sites closest to the exit, so the weight of the exit site is

clearly much larger than the other nearest neighbors. Thus, the probability to jump

out is significantly bigger for large T than in the case of small values of the threshold.

This phenomenon can be observed only in the case of small density of particles,

and it is obviously not present if we choose the sure exit rule. If the density of

particles grows, the interaction among particles plays a much more important role in

the dynamics, influencing crucially the behavior of the overall flux, as we will comment

later on, so this increased flux effect disappears.

As in figure 2.1, in figure 2.4 we propose the data plot of the average outgoing flux

as function of the number of particles N for the serial update and for the different

choices of the exit rule. Analogous consideration as we made before for the parallel

update can be made.
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Figure 2.4: Averaged outgoing flux vs. number of pedestrians. The symbols

+, ×, ∗, the squares and the circles represent respectively the cases T = 0, 2, 5, 30, 300,

with L = 101, W = 0 and serial update. The solid line has been obtained by fitting

the Monte Carlo data corresponding to the case T = 0. On the left we show the

simulation results for the choice of the sure exit, on the right the data refer to the

threshold exit.

Some general phenomena governing the dynamics of this model can be observed on

how the value of the threshold influences the outgoing flux. We can see that when the

number of particles is sufficiently small, i.e. the average density of particles is small,

the outgoing flux does not differ substantially even changing T > 0. This happens

because the effect of big values of T is to favor the formation of groups of particles

moving together. These clusters of particles moves very slowly in the corridor, so their
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presence decrease the outgoing flux, but they are not very stable especially if their

size (the number of particles involved) is not very big.

Anyway, clusters of agents do not appear if the number of particles is too much

small. In this case, it is difficult for a particle to encounter many others and form a

stable cluster. The overall effect of a positive threshold is in this case just to favor

interaction among a small groups of particles, obtaining a little slow down in the exit

of particles with respect to the independent walk of particles (T = 0). This is easily

observable for the sure exit case. In the case of threshold exit, this effect competes

with the increase of probability to exit due to the weight of the exit site discussed

before, giving an overall effect of increasing the flux.

What happen if the number of particles grows? When the number of agents is

larger, the probability to form a big stable cluster of particles increases. Obviously,

since the threshold represents the maximum size of an attractive group, the more the

threshold is large the more it is easy to see the formation of big stable clusters of

particles. Once the clusters are formed, it is therefore likely that agents will spend

a substantial amount of “effortless” time in such large clusters that will ultimately

prevent them from exiting as indicated in Fig. 2.5 that depicts cluster formation

behavior for N = 10000 and T = 300.

Figure 2.5: Typical configuration. Typical configuration of the system at large

time in the case T = 300, L = 101, and N = 10000. White and black points denote,

respectively, empty and occupied sites of the lattice.

This is shown in the data plots, figures 2.1 and 2.4. We see in the plot, for

N ≤ 1500, that the behavior of the outgoing flux for different T is qualitatively the

same. This happens until the number of particles grows to 2000, where for large values

of T (300 in the plot), we are in a regime of clusters formation. The resulting effect for

T = 300 is a flux drop (the flux suddenly decreases). Once the system is in this cluster
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formation regime, the increase of number of particles does not affect significantly the

outgoing flux, so we see for instance that the outgoing flux for T = 300 and bigger

values of N remains roughly constant.

If the system is not in a cluster formation regime the outgoing flux grows as a

function of N . Note that for different values of threshold the system may reach the

cluster formation regime for N bigger or never reach it (small values of T ).

The choice of the update rule influences which values of the parameters of the

system give a clustering regime. In the case of serial update, the system reaches it

earlier, for smaller number of individuals N , and the flux stabilizes at a lower value.

This is due to the fact that with the serial update rule the clusters of particles are

more stable. Indeed, when the occupation number on a site exceeds the threshold,

at the next time step if become unattractive for all particles neighboring it, and a

parallel update favors to break the cluster. With the serial update rule, a cluster loses

some particles but it is very difficult to break. Nevertheless, if T is sufficiently small,

the system does not form clusters.
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Figure 2.6: Averaged outgoing flux vs. number of pedestrians. The trian-

gles, the squares, the diamonds and the pentagons represent respectively the cases

T = 10, 30, 60, 100, with L = 101, W = 0 and serial update (in black) and paral-

lel update (in grey). The case 0, 2, 5 are not reported since at this scale would be

indistinguishable.

The comparison between the outgoing flux behavior with the different choices of

the update rules is illustrated in figure 2.6. Note that in the figure we do not report

the plot of the outgoing flux for T ≤ 5 because the values measured for the flux are
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very close, at this scale we cannot distinguish the plot for the two exit rules. For

larger values of T we plot the outgoing flux as a function of N for T = 10, 30, 60,

100. As a test of the different behavior of the two cases, let us see for instance the

squares in the picture, corresponding to the case T = 30. With the parallel update

the flux is monotonic in N , while with the serial update the system is already in the

clustering regime for N = 2000. For T = 10 the system shows the same behavior with

the different rules until the number of particles grows up to 6000.

Totally analogous results hold in the case of threshold exit too.

In the sequel we will focus mainly on the parallel update and on the sure exit, so

these choices will be assumed when it is not differently stressed.

3.3 The interaction with the wall

We study the dependence of the dynamics on the possible choice of the parameter

W ≥ 0, the wall stickiness. We introduce this parameter to take into account the

possibility that the pedestrian may have the tendency to move close to the wall in

condition of lack of visibility.

We can expect that the choice of a positive value for the parameter W can im-

prove the outward flux. This intuition follows from the fact that the number of sites

neighboring the boundary are of order L while the total number of sites is of order

L2. So the choice of the parameter W > 0 helps reducing the random walk on a

number of sites of lower order and the individuals will find the exit earlier. On the

other hand we can expect that the localization of the particles on the wall can favor

the formation of clusters of particles, that we have seen to slow down the evacuation.

Our simulations show that the leading effect is the increase of the flux rate. In

figure 3.7 we show the effect of the wall interaction on the outgoing flux. We plot the

measured average outgoing flux for different values of W ≥ 0. In the figure, to have a

readable picture, we show the cases T = 0 in the left panel, and the cases T = 5 and

T = 300 in the right panel, but the increasing effect is present for any value of the

threshold. We use grey tones to distinguish the values assumed by W = 0, 1, 3, 5, 10,

using lighter tone when W is increasing. For any fixed value of the threshold T , the

flux is monotonic increasing in W . The increment is bigger when the clustering effect

is not so strong, hence for small values of T .

It is interesting to notice that even if the measured value of the flux increases

when W grows, for any fixed value of W the plot of the average flux as function of

N has the same behavior of the one resulting in the case W = 0. To illustrate this
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Figure 3.7: Averaged outgoing flux vs. number of pedestrians. Simula-

tions with L = 101, parallel update, and, from the darkest to the lower grey,

W = 0, 1, 3, 5, 10. On the left: plot of the average outgoing flux for T = 0 (+).

On the right: plot of the average outgoing flux for T = 5 (∗) and T = 300 (circles).

observation, we construct a plot analogous to the one we made for W = 0 in figure

2.1. The qualitative behavior of the outgoing flux as a function of N does not change

for W > 0. We see in figure 3.8 illustrating the case W = 3 that both with the sure

exit rule and with the threshold exit the plot are similar to those in figure 2.1.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2000  4000  6000  8000  10000

ou
tg

oi
ng

 f
lu

x

number of individuals

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2000  4000  6000  8000  10000

ou
tg

oi
ng

 f
lu

x

number of individuals

Figure 3.8: Averaged outgoing flux vs. number of pedestrians. The symbols +,

×, ∗, the squares and the circles represent respectively the cases T = 0, 2, 5, 30, 300,

with L = 101, W = 3, and parallel update. The solid line has been obtained by

fitting the Monte Carlo data corresponding to the case T = 0. On the left we show

the simulation results for the choice of the sure exit on the right the data refer to the

threshold exit.

We remark also that even in this case, as observed earlier for W = 0, the clustering

regime starts for T = 300 when the number of individuals grows up to 2000. For small
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number of particles (N ≤ 1500) the measured outgoing fluxes for any fixed value of

the parameter W are really close. So the measured flux does not depend on T for

these values of N .

3.4 The role of the obstacle

We have seen even in the study of the residence time that it is not always obvious to

understand the effect of a different geometry induced by an obstacle on the dynamics.

Note also that for the value T = 0, particles move performing independent symmet-

ric random walks. Nevertheless, the results we found in Chapter 2 are not directly

applicable to this model, not even for T = 0. This is due to the different boundary

conditions.

We expect that the obstacle can influence the resulting outgoing flux, because of

excluded volume, in two different ways. On the one hand it can make easier for a

particle to find the exit, for instance making more difficult to reach a region far from

the exit, on the other the presence of an obstacle can favor the clustering and influence

in which region the cluster is formed. How will the positioning of the obstacle affect

the measured flux? Does exist a suitable positioning of the obstacle that can maximize

the flux?

We can notice in our simulation that if the obstacle is sufficiently small it does not

visibly affect the flux.

Let us start considering a small square obstacle placed at the center of the lattice.

The obstacle is 21 × 21. In figure 4.9 we see the gray symbols representing the flux

measured in presence of the obstacle to be really close to that one measured for the

empty lattice. An interesting remark is that differently to the empty lattice case,

when W = 0 the flux drop for T = 300 happens for a smaller N (1500 in the figure).

We consider now the case of a bigger obstacle. In figure 4.10 we show the behavior

of the flux if it is present a squared obstacle with side 41 with center in the center of

the corridor. For small values of the threshold there is not a great difference in the

average exit flux. We can see it for T = 0, 2, 5. It is instead interesting to note the

clustering induced by the obstacle for large values of T . The flux drop for T = 300

happens for N = 1500 both if W = 0 and if W = 3. We recall that in absence of

obstacle we observe this flux drop for T = 300 for the first time if N = 2000. Even

for T = 30, the flux in the case W = 0 is reduced by the cluster formation (see the

squares in figure 4.10, in the left panel, the grey symbols are always below the black).

We recall here that in the previous models in Chapters 1, 2, a squared obstacle at
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Figure 4.9: Averaged outgoing flux vs. number of pedestrians. The symbols +,

×, ∗, the squares and the circles represent respectively the cases T = 0, 2, 5, 30, 300,

with parallel update, L = 101 and a squared obstacle with side 21 placed in the

lattice with center in (51, 51). The gray symbols represent the case of presence of the

obstacle, while the black symbols refer to the empty lattice. The solid line has been

obtained by fitting the Monte Carlo data corresponding to the case T = 0. On the

left we show the simulation results for W = 0, on the right the data refer to W = 3.
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Figure 4.10: Averaged outgoing flux vs. number of pedestrians. As in figure

4.9, with a squared obstacle with side 41 and center in (51, 51).

the center of the strip produced a smaller residence time, i.e., it selected the particles

that cross the strip in a smaller time. Moreover, we found the residence time to be

symmetric in the position of the obstacle with respect to the center of the obstacle.

The same does not happen now. We find here a strong asymmetry. Let us first

consider the same 41× 41 obstacle, but we consider it to be closer to the exit than to

the opposite side of the lattice. In figure 4.11 we show the data for the square with

center in (71, 51). We find out that this obstacle close to the exit produces a loss in
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the outgoing flux (in figure we find the grey symbols always below the blacks, both

if W = 0 and if W = 3). It is interesting to notice that now the clustering effect

does not appear for smaller N with respect to the case of the empty corridor (without

obstacle).
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Figure 4.11: Averaged outgoing flux vs. number of pedestrians. As in figure

4.9, with a squared obstacle with side 41 and center in (71, 51).

So we observed that an obstacle close to the exit cannot increase the average flux.

What if the same 41 × 41 obstacle is in the left half of the lattice? Consider now

the square with center in (31, 51). We can see in Fig. 4.12 that in this geometry the

outgoing flux increases if the threshold is not too much large (T ≤ 5 in the plot). On

the contrary, if the threshold is large, T ≥ 30 in the figure, we can observe that the

clustering regime is reached earlier than in the empty corridor case. Indeed, there

is a loss in the outgoing flux for T = 30 and W = 0, and the clustering appears at

N = 1000 for the parameters T = 300 and W = 0, while at N = 1500 for T = 300

and W = 3.

These two phenomena are more evident if the obstacle has larger side, while for

a smaller obstacle the effect on the flux is negligible. We keep the center to be in

(31, 51). In the left panel of figure 4.13 we represent the effect of a larger squared

obstacle of side 51 on the measured flux, with W = 0. It is evident that the clustering

is present for T = 300 and N = 1000. On the contrary, in figure 4.13, right panel, the

squared obstacle has side 21, so we see a negligible effect on the outgoing flux, except

that the clustering appears for T = 300 at N = 1500, earlier if there is the obstacle

with respect to the empty lattice.

Summarizing, we find a strong dependence on the position of the obstacle. If

the obstacle is closer to the exit than to the opposite side, the flux decreases. On

the contrary, if the obstacle is close to the entrance and far from the exit, the flux
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Figure 4.12: Averaged outgoing flux vs. number of pedestrians. As in figure

4.9, with a squared obstacle with side 41 and center in (31, 51).
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Figure 4.13: Averaged outgoing flux vs. number of pedestrians. As in figure

4.9, with W = 0. Left panel: a squared obstacle with side 51 the right and center in

(31, 51) is placed in the corridor. Right panel: the obstacle has side 21 and center in

(31, 51).

increases for T small. But if the threshold is large, an obstacle close to the entrance

point favors the formation of clusters.

Our interpretation of the results is that the obstacle close to the exit, making

more difficult to reach the region on the right of the obstacle where there is the exit,

produces a decreasing in the outgoing flux with respect to the empty lattice case.

An obstacle close to the other side, making difficult for a particle to reach again

the region on the left of the obstacle once it is on the right side, keeps the particles

longer in the region with the exit, favoring the exit. However, since the obstacle

reduces the free region close to the entrance point, it makes more likely the formation

of a big stable cluster in that region. This may produce a decreasing in the flux, if
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the threshold is sufficiently big and the number of individuals sufficiently large.

3.5 Evacuation time

We are interested in evaluating the evacuation time, i.e., the average time needed to

let all the individuals leave the corridor.

We will consider the following experiment: we dispose N agents randomly in the

corridor, we let start the dynamics accordingly with the description of the model in

Sect. 3.1, but we do not consider any new individual entering in the corridor. We

observe which is the time needed to the last agent to exit from the corridor. The

average time measured repeating this experiment will be called evacuation time.

The results discussed above on the outgoing flux let us argue which behaviors

would be observed for the evacuation time. Note that since the number of agents

is decreasing during the evolution of the system, it will be more difficult to enter

in a clustering regime, i.e., it is necessary a larger number of particles to reach it.

Because of the results on the effect of an obstacle on the the outgoing flux of the

previous section, we expect to find analogously that the evacuation time is smaller

with respect to the case of empty corridor if the obstacle is far from the exit. On the

contrary, the more an obstacle is close to the exit, the more we expect the evacuation

time to be large.

We plot in figure 5.14 the evacuation time as a function of the number of individuals

N , for W = 0, and values for T from 0 to 300, in the geometry of the empty lattice.
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Figure 5.14: Averaged evacuation time vs. number of pedestrians. The

symbols +, ×, ∗, the squares and the circles represent respectively the cases T =

0, 2, 5, 30, 300, with L = 101, W = 0, and no obstacles in the corridor. On the left we

excluded the results for T = 300 to have a more readable figure, on the right we have

the same picture added of the data for T = 300.
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We can observe that the evacuation time is monotone in T for fixed N if N is

large, while is essentially not depending on T > 0 if N is small. The independent

random walk for T = 0 guarantees the minimum evacuation time. Note also that the

system reaches the clustering regime only for large values of the threshold T and for

large N , for N ≥ 3000 when T = 300 in the plot. Note that in this clustering regime

there is a clear growth in the evacuation time.
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Figure 5.15: Averaged evacuation time vs. number of pedestrians. The

symbols +, ×, ∗, the squares and the circles represent respectively the cases T =

0, 2, 5, 30, 300, with L = 101, W = 0, and a squared obstacle with side 41 and center

in (31, 51) in the corridor. The gray symbols represent the case of presence of the

obstacle, while the black symbols refer to the empty lattice. On the left we excluded

the results for T = 300 to have a more readable figure, on the right we have the same

picture added of the data for T = 300.
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Figure 5.16: Averaged evacuation time vs. number of pedestrians. As in

figure 5.15, here W = 3.

The presence of the obstacle in the corridor produces the expected effect on the

evacuation time. As we made in the previous section we consider a large squared
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Figure 5.17: Averaged evacuation time vs. number of pedestrians. The

symbols +, ×, ∗ and the squares represent respectively the cases T = 0, 2, 5, 30, with

L = 101 and a squared obstacle with side 41 and center in (71, 51) in the corridor. The

gray symbols represent the case of presence of the obstacle, while the black symbols

refer to the empty lattice. On the left we show the simulation results for W = 0, on

the right the data refer to W = 3.

obstacle with side 41 and we consider it to be in the left half of the corridor or in the

right half. We report in figures 5.15–5.16 the comparison of the average evacuation

time calculated for the empty corridor (black symbols) and for the presence of the

obstacle of side 41 with center again in (31, 51) (grey symbols). We consider the

cases of no influence by the wall on the dynamic (W = 0) in figure 5.15 and the

case of positive W in figure 5.16. The presence of the obstacle in the left half of the

corridor, far from the exit, produces a reduction of the evacuation time in most of the

considered data. It is interesting to observe that for W = 0 and T = 300 (figure 5.15,

right picture) the clustering effect starts for a smaller number of agents with respect to

the empty corridor case, so for T = 300 and N between 2500 and 3000 the evacuation

time is longer if the obstacle is present. Once the clustering regime is reached in both

cases (large N), the obstacle yields again a shorter evacuation time.

In figure 5.17 we consider the presence of the same square obstacle in the right

half of the corridor, closer to the exit. We compare the evacuation time in presence of

this obstacle (gray symbols) and in absence of obstacles (black symbols). The center

of the obstacle is now put in (71, 51). As in the case of the evaluation of the outgoing

flux we find this positioning to be unfavorable, i.e., it produces an increment in the

evacuation time, both if W = 0 (left picture) and if W = 3 (right picture).
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Chapter 4

Lorentz Model

The 2D Lorentz gas model is a system of non–interacting particles moving in a region

where static small disks (scatterers) are distributed according to a Poisson probability

measure. Particles perform uniform linear motion up to the contact with a disk where

they are elastically reflected.

The Lorentz process has been firstly studied in [30] in the Boltzmann–Grad limit.

In a low density limit (in the scatterers) in [6], the authors studied the stationary

configuration and the mass flow of the system in the case of an infinite 2D slab,

exploiting the reduction of the limit problem to a one–dimensional problem.

We expect that a similar result can be proved in our more complex geometry:

the horizontal strip with one or more large fixed reflective obstacle, vertical sides in

contact with two mass reservoirs, and horizontal sides behaving as specular reflective

boundaries, even if the limit problem is not one–dimensional anymore. A possible

strategy could be to make use of the linear Boltzmann equation as an intermediate

step between the Lorentz model and the macroscopic Laplace problem with mixed

boundary conditions.

4.1 The model

The Lorentz model is a system of light particles moving according to the laws of

Newtonian mechanics in the two-dimensional space, where there is also a random

distribution of scatterers. We consider as in Chapter 1 as domain a subset Ω of the

finite strip (0, L1)× (0, L2) ⊂ R2. This strip has two open boundaries, that we think

as the left side ∂ΩL = {0} × (0, L2) and the right side ∂ΩR = {L1} × (0, L2). The

system is in contact on the left side and on the right side with two mass reservoirs at

equilibrium with particles densities ρL and ρR, respectively. Particles traveling into
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Ω are instead specularly reflected upon colliding with the upper side (0, L1) × {L2}
and lower side (0, L1)× {0} of the strip.

The scatterers we consider are fixed hard disks at rest with radius ε. The scatterers

are distributed in Ω uniformly in space according to a Poisson law of mean λε > 0, so

that the probability of finding exactly n scatterers in a measurable set of A ⊂ Ω with

measure |A| is

(1.1) e−λε|A|
λnε |A|n

n!
.

We denote this probability by Pε and we call Eε the associated expectation.

A light particle moving in the domain Ω travels freely in Ω up to the instant of

contact with a scatterers, then it is elastically reflected.

We consider the case in which large fixed obstacles are placed in the strip so that

the domain Ω is a connected set. These obstacles are convex sets with smooth reflective

boundaries. We consider a generic configuration of a finite number of obstacles with

positive mutual distance and positive distance from the sides of the strip. In the

sequel we will call ∂ΩE the union of the obstacle boundaries and the upper and lower

sides of the strip. Therefore, when a particle reaches ∂ΩE it experiences a specular

reflection.

∂ΩL ∂ΩR

∂ΩE

Ω

ρRρL

Figure 1.1: Domain Ω: strip with large fixed obstacles, where ∂ΩL and ∂ΩR are the

vertical open boundaries and ∂ΩE are reflective boundaries.

Since all collisions preserve the energy, the modulus of the velocity of a particle

moving in Ω is constant. We consider it to be equal to one, so that the phase space

is Ω× S1, where S1 := {v ∈ R2 : |v| = 1}.
For any arrangement of n scatterers drawn according to the Poisson law with

mean λε, we denote the centers of the scatterers by cn = (c1, c2, . . . , cn). We define

Ψ−scn (x, v) as the flow backward in time from a point (x, v) ∈ Ω× S1 for a time s > 0

and for the configuration of scatterers individuated by cn. So Ψ−tcn(x, v) describes the

backward dynamics for a time t of a particle put in the point (x, v) ∈ Ω × S1. We
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recall that these trajectories are elastically deflected at contact with the scatterers

and with the elastic boundary ∂ΩE. When following the time flowing from 0 to t,

we define the function τ = τ(x, v, t, cn) as the time the trajectory leaves a reservoir

and it enters into the strip, reaching finally the position (x, v) at time t. So if the

backward trajectory starting from (x, v) at time t reaches the boundary ∂ΩL ∪ ∂ΩR

in the time interval [0, t], this happens after a backward time t− τ . If the trajectory

Ψ−scN
(x, v) never hits the boundary ∂ΩL ∪ ∂ΩR for times s ∈ [0, t] we put τ = 0.

The flow previously defined allows us to define the particle density of the system

at time t > 0 as

(1.2) fε(x, v, t) = Eε[fB(Ψ−(t−τ)
cn (x, v))χ(τ > 0)] + Eε[f0(Ψ−tcn(x, v))χ(τ = 0)],

where we are considering as initial datum for fε at time 0 a function f0(x, v) ∈
L∞(Ω× S1) and as boundary datum fB (not depending on t):

(1.3) fB(x, v) :=

1/2π ρL x ∈ ∂ΩL, v · n > 0

1/2π ρR x ∈ ∂ΩR, v · n > 0.

Here 1/2π is the density of the uniform distribution on S1 and n = n(x) is the inward

pointing normal of Ω at x ∈ ∂Ω.

We are representing the density fε as the sum of two contributions: the first one

due to the trajectories leaving a reservoir at a positive time (so transporting the value

fB for the density), the second one due to particles that fulfill their motion into Ω for

every time s ∈ [0, t] (so transporting the value f0).

Note that: i) the configurations of scatterers with the center of an obstacle in the

disk of center x and radius ε cannot contribute to the expectation in (1.2) (they have

to be forbidden). ii) We allow overlapping of scatterers. iii) The dynamics Ψ−tcn is

defined only almost everywhere with respect to Pε: for instance a trajectory hitting

the set of zero measure intersection of two scatterers is not well defined beyond the

collision.

We deal with the problem of finding a stationary state for the system. So we are

wondering if there exists fSε (x, v) not dependent on t such that for any t ≥ 0 solves

the equation

(1.4) fSε (x, v) = Eε[fB(Ψ−(t−τ)
cn (x, v))χ(τ > 0)] + Eε[fSε (Ψ−tcn(x, v))χ(τ = 0)].
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4.2 Expected results

We are interested in studying the limit of fSε as the scale parameter ε goes to 0. We

scale the scatterers density as

(2.5) λε = ε−1ηελ

where λ > 0 is a fixed parameter and ηε is diverging, but

(2.6) η7
εε

1
2 → 0 as ε→ 0.

Note that we are considering a dilute configuration of obstacles. Indeed λε → ∞
but the typical area occupied by the scatterers in a region of measure one is of the

order of λεε
2 → 0. On the other hand the inverse of the mean free path is of the order

of λεε = ηελ → ∞, so we expect a diffusive behavior in the limit. Recall that in the

classical Boltzmann-Grad limit ηε = 1.

Our conjecture is that for ε sufficiently small there exists a unique stationary

solution fSε (x, v) ∈ L∞(Ω×S1) for the equation (1.4), that for ε→ 0, fSε converges to

ρ, where ρ is solution of the Laplace problem on Ω with mixed boundary conditions:

(2.7)


∆ρ(x) = 0 x ∈ Ω

ρ(x) = ρL x ∈ ∂ΩL

ρ(x) = ρR x ∈ ∂ΩR

∂nρ(x) = 0 x ∈ ∂ΩE.

This should be true in the L∞(Ω× S1) setting.

A possible strategy is to compare the Lorentz model with the model described by

the linear Boltzmann equation on the same domain Ω. Then we could exploit the

results on the linear Bolzmann equation in the domain Ω that we proved in Chapter

1: Theorems 1.1 and 1.2. These results allow to reach the macroscopic picture for the

limiting stationary density given by (2.7).

The proof of the asymptotically equivalence of the Lorentz process and the linear

Boltzmann dynamics for ε→ 0 with (2.5)-(2.6) consists in estimating the events that

prevent markovianity of the Lorentz gas in the same spirit of [6, 21, 22]. To do this a

Gallavotti’s argument as in [30] is needed (see also [8, 48]).

We introduce a decomposition analogous to the one introduced in (4.12) for the

gSε . We write the density fε(x, v, t) solution of the Lorentz process defined in (1.2)

separating the trajectories remaining in Ω for every time in [0, t] and the trajectories

that come from the boundary ∂ΩL ∪ ∂ΩR for a positive time τ ∈ [0, t]:

fε(x, v, t) = f outε (x, v, t) + f inε (x, v, t),
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where

(2.8) f outε (x, v, t) := Eε[fB(Ψ−(t−τ)
cn (x, v))χ(τ > 0)]

and

(2.9) f inε = Eε[f0(Ψ−tcn(x, v))χ(τ = 0)].

We introduce the flow Fε(t) that takes account only of trajectories that stay internal

to Ω for all times s ∈ [0, t]:

(2.10) (Fε(t)h)(x, v) = Eε[h(Ψ−tcn(x, v))χ(τ = 0)] h ∈ L∞(Ω× S1)

and we observe that f inε (t) = Fε(t)f0.

To prove the results on stationary solution of the Lorentz process we need to prove

the following estimates, that we believe to hold:

Let us fix T > 0. Considering the goutε defined in (4.12), for any t ∈ [0, T ]

(2.11) ‖f outε (t)− goutε (t)‖L∞(Ω×S1) ≤ Cε1/2η3
εt

2(1 + t);

For any t ∈ [0, T ] and any h ∈ L∞(Ω× S1)

(2.12)
∥∥(Fε(t)− Sε(t))h∥∥∞ ≤ C‖h‖∞ε1/2η3

εt
2(1 + t).

We believe that those estimates can be proven via a direct estimate of the bad

events preventing the Markovianity: recollision and interference events (see [6, 30]).

The estimate proposed in [6] does not apply directly on our problem due to the

presence of the reflective boundaries of the obstacle and of the strip. A more accurate

study of the possible trajectories should be made, taking carefully into account the

new configurations of the scatterers that due to the presence of those boundaries yields

an interference or a recollision event.

Our aim is to complete this study in the near future.
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