Autovettori e diagonalizzazione.

(Supplemento al testo consigliato, Itinerario di geometria e algebra lineare)

Sia A una matrice quadrata di ordine 3 e supponiamo che esistano tre vettori linearmente indipendenti \underline{u}_1 , \underline{u}_2 , \underline{u}_3 e tre numeri reali λ_1 , λ_2 , λ_3 tali che $A\underline{u}_i^t = \lambda_i\underline{u}_i^t \ \forall i$. Ciascun vettore \underline{u}_i si dice autovettore di A con rispettivo autovalore λ_i . Facciamo un esperimento: costruiamo una matrice C mettendo in colonna i tre autovettori e consideriamo anche l'inversa C^{-1} (perché essa esiste con certezza?...).

Ora calcoliamo il prodotto

$$C^{-1}AC$$
.

Intanto calcoliamo AC: otteniamo una matrice con le tre colonne uguali ai rispettivi autovettori moltiplicati per i propri autovalori. Utilizzando la definizione stessa di prodotto di matrici possiamo sinteticamente scrivere

$$AC = C \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} .$$

Ora, moltiplicando a sinistra con C^{-1} è immediato notare che il risultato finale è

$$\left(\begin{array}{ccc}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{array}\right) .$$

Abbiamo così dimostrato che una matrice dotata di una base di autovettori può essere "diagonalizzata" mediante un'opportuna matrice invertibile.