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MECCANICA RAZIONALE
ING. MECCANICA
PROF. DANIELE ANDREUCCI
Prova scritta del 26/01/2026

1.

Calcolare il potenziale lagrangiano nei seguenti casi. Si ricordi che U" ¢
definito a meno di una costante additiva.

Qui «, R, k, kg, k1 sono costanti positive date. La coordinata lagrangiana é
denotata da ¢ € (—m,7) e le coordinate cartesiane nel sistema fisso da x.

[01]

Un punto materiale (X, m) ha parametrizzazione lagrangiana
X"(¢) = Rcos pe; + Rsin e .

Su di esso agisce la forza

F = o|z|x.
U(¢) = S R¥(cos 9)° + (sinp)?.
b «
U*(¢) = 5 Rl(cos 9)° + (sinp)].

U () = 0.

d Nessuna delle altre.
Un punto materiale (X, m) ha rappresentazione lagrangiana, per t > 0,

X"(p,t) = at cos pe; + 2at sin pes .

Su di esso agisce la forza

F=—fkx.
4 k
Ut(p,t) = —5042152.
b k
U"(p) = —5012[(008 )? + 4(sinp)?].
c

U(p) = —§a2t2[1 + 3(sin¢)?].
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d Nessuna delle altre.

Un’asta rigida AB di lunghezza 2L e massa M ha parametrizzazione lagran-
giana
X"(p,s) = scospe; + (R+ ssiny)es .

Qui s € [-L, L] é la coordinata solidale. Sull’asta agisce la distribuzione di

forze
dF(z,s) = —(ko + ski)z ds.
? 2
U(p) = —gklRLg sin .
b
Ut(p) =0.
c

U"(¢) = koRL?*(cos p)? .

d Nessuna delle altre.

SOLUZIONE

I: c

Infatti la forza ha potenziale conservativo

@
Ux) = —|z®,
() = Sla
per cui quello lagrangiano é

« «

Ue) = SIXH ()} = SR
3 3

ossia costante.

II: ¢

Infatti la forza ha potenziale conservativo

k
Ulw) = —[af*,

per cui quello lagrangiano é
k k k
U (p) = ) | X" ()2 = ) [?t? (cos p)? +4a’t?(sin ¢)?] = —50421&2[1 +3(sinp)?].

III: a
La distribuzione del potenziale elastico é

ko + sk,

dU(z,s) = 5

|| ds

)

e pertanto quella del potenziale lagrangiano é

k k
AU (p,5) = — "2 X ) s =

ko + Skl

5 [R? 4 s* + 2Rssin ¢]ds .
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Dunque integrando, e ricordando che I'integrale di s e s® su [—L, L] si annulla, si
ha

L L
Ut(s) = 7% /(52+R2)ds— %/2R52sin¢ds
L —L
ko

2 2
- (—L3 n 2LR2) ~ kRS s

2\3

2.
Un corpo rigido non degenere C' si muove di moto polare di polo O. Il vincolo
é liscio. T denota l'energia cinetica di C', Lo il suo momento angolare (o
della quantita di moto) relativo a O e M&® il momento delle forze esterne
direttamente applicate relativo a O. Indichiamo anche con (u;) una terna
solidale principale in O e con w la sua velocita angolare.
Sia

ME = —kw,
con k > 0 costante. Sia anche, all’istante ¢t = 0, T'(0) > 0.
a Siha T'(t) > 0 per ogni ¢t > 0.
b Si pud avere o meno T'(t) = 0 per qualche ¢ > 0, in dipendenza della
geometria delle masse di C.
¢ Si ha comunque T'(t) = 0 per qualche ¢ > 0.
d Nessuna delle altre.
Sia ME*(t) = 0 per ogni t. Si puo concludere che il moto sia certamente
una precessione regolare o una rotazione?
a Si, ma solo per particolari geometrie delle masse di C.
b Si, sempre.
c Si, sotto la sola ipotesi che O sia il centro di massa di C.
d Nessuna delle altre.

Sia M (t) = 0 per ogni ¢. Allora scrivendo

si ha

a Le componenti oy, nella base solidale sono costanti nel tempo.
b Le componenti 85, nella base fissa sono costanti nel tempo.

c Né le aj, né le 55, sono in genere costanti.

d Nessuna delle altre.
SOLUZIONE
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I: a
Infatti dalla teoria

dT ext 2
E:MO w:*k|W| y

1 1 )
T= S00W W > §Im|w| ,
ove I, é il minimo tra i momenti d’inerzia principali in O. Pertanto

dT 2k

—>_-T,

dt — I,
da cui per ognit > 0

— 2k 4
T(t)>T(0)e Tm" >0.

II: a
Dalla teoria, questo € il caso se lellissoide d’inerzia in O ha simmetria di rotazione.
III: b
Dalla teoria, nei moti polari per inerzia Lo é costante nella base fissa.

3.

Un corpo rigido non degenere C' si muove di moto polare di polo O. Il vincolo
¢ liscio. La terna (uy) @ solidale e principale in O; indichiamone con Iy, i
momenti d’inerzia. Supponiamo che

Iy < Iy < I33.

Indichiamo con M&®* il momento delle forze esterne direttamente applicate
relativo a O.
Qui «, 8 sono costanti positive date.

Supponiamo che per ogni t
M () = aetuy(t) .

a Il moto pud essere una rotazione intorno a w3(t), ma non intorno a wus(t).
b Il moto puod essere una rotazione intorno a wusg(t), ma non intorno a ug(t).
¢ Il moto non puo essere una rotazione.

d Nessuna delle altre.

Supponiamo che per ogni t
MU (t) = aeP (ua(t) + us(t)).

a Il moto puo essere una rotazione intorno a ws(t) + ws(t), ma non intorno
a Uy (t)

b Il moto puo essere una rotazione intorno a w1 (t), ma non intorno a wus(t) +
us (t)
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c Il moto puo essere una rotazione sia intorno a w;(t), che intorno a ua(t) +
us (t)

ﬁessuna delle altre.

09]

Si assuma che w(t) # 0 per ogni t. Quale delle seguenti affermazioni é vera?
a La risultante delle reazioni vincolari é nulla.

b Per ogni ¢ > 0 fissato esistono infiniti moti solidali che hanno velocita
assoluta nulla all’istante ¢.

¢ Puo accadere che la velocita assoluta di ogni moto solidale X (¢, A), diverso
dal polo O, sia sempre diversa da zero, per ogni t e ogni A.

d Nessuna delle altre.

SOLUZIONE

I: b

Si sa dalla teoria che se il momento delle forze é parallelo a un asse principale,
il moto puo essere una rotazione intorno a quell’asse e viceversa, se il moto é una
rotazione intorno a un asse principale, il momento deve essere parallelo a quell’asse.
II: d

Infatti us +wu3 non é principale, quindi il moto non pué essere una rotazione intorno
a w9 + ug perché il momento M 8“ ha componente normale a tale asse nulla.
Inoltre uy é invece principale, quindi non si puod avere rotazione intorno a uy, perché

allora si dovrebbe avere M " parallelo a .

II: b
Infatti tutti i punti dell’asse istantaneo di rotazione hanno velocita nulla, quindi
vale b. La a non vale in genere.

4.

Si consideri il moto di un elemento materiale (X, m) vincolato a una curva
regolare 9(s), con s € R ascissa curvilinea e curvatura k > 0. Sul punto ¢é
applicata direttamente la forza F'.

Indichiamo con (T', N, B) la terna intrinseca e con « > 0 una costante data.
Se il vincolo é liscio, quale delle seguenti ipotesi garantisce che l’energia
cinetica resti costante?

a F' é conservativa.

b F =aT.

c FF=aN.

d Nessuna delle altre.

Se il vincolo & scabro, secondo la legge di Coulomb-Morin, con § # 0, quale
delle seguenti & vera?

a La velocita deve annullarsi in un tempo finito.

b La reazione vincolare deve avere componente nulla lungo IV.

c La forza F' deve avere componente nulla lungo B.

d Nessuna delle altre.
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Quale delle seguenti puo essere vera durante il moto, se § # 07
a

d
—(v- N 0.
p” (v ) >
b
a-T>0.
c
a-N=0
d Nessuna delle altre.
SOLUZIONE
I: ¢

Infatti m§ = F - T = 0 nel caso ¢, quindi $ si mantiene costante.

II: d

La a ovviamente non vale senza ipotesi su F'. La b e la ¢ non hanno senso.
III: b

Infatti v = $T e a = §T + k3’N.

5.

Un sistema di punti materiali & vincolato da vincoli olonomi regolari. La
parametrizzazione lagrangiana é z = 2"(q,t), g € Q,t € R, z € R". Si
assuma la ipotesi dei lavori virtuali.

Lo spazio normale N, ;f contiene in ogni istante:

a La reazione vincolare complessiva fy;, € R™.

b L’atto di moto 2 € R™ del sistema.

¢ Gli spostamenti virtuali, se i vincoli sono fissi.

d Nessuna delle altre.

Le reazioni vincolari sui punti materiali del sistema

a Fanno ciascuna lavoro virtuale nullo.

b Fanno complessivamente lavoro nullo, se i vincoli sono fissi.

¢ Hanno risultante nulla.

d Nessuna delle altre.

Lo spazio degli spostamenti virtuali V ; f

a Dipende dalla parametrizzazione lagrangiana scelta.

b I indipendente da (z,t) se le forze sono conservative.

c Contiene gli atti di moto 2 € R, se i vincoli sono fissi.

d Nessuna delle altre.

SOLUZIONE

I a

E I'ipotesi dei lavori virtuali. L’atto di moto appartiene a un traslato dello spazio
degli spostamenti virtuali, che coincide con esso se I vincoli sono fissi.

II: b

L’ipotesi dei lavori virtuali implica che il lavoro virtuale complessivo delle reazioni
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vincolari sia nullo, ma il lavoro virtuale coincide con quello effettivo se i vincoli sono
fissi. La a e la ¢ in genere non valgono.

III: ¢

Lo spazio V,, + f dipende solo dai vincoli e non dalla parametrizzazione lagrangiana,
percio a non vale, e, dato che appunto lo spazio non dipende dalle forze, la b non
ha senso. Vale invece c, perché gli atti di moto in genere soddisfano

azL
L eV, 9z
z z,tf + ot
ma aa—z;' = 0 se i vincoli sono fissi.
6. Si consideri il sistema mobile di riferimento S = (X, (uy)), ove Xo

coincide con origine del sistema di riferimento fisso e

u; = cos(at) e + sin(at) eg,
ug = —sin(at) e; + cos(at) e,

us = es3.

Indichiamo con (yp,) le coordinate in S.
Due punti materiali di uguale massa (X1, m) e (X2, m) sono vincolati alla
parabola solidale con S data da

y2=0,  y1=0y3.
I due punti si scambiano le forze elastiche
Fi,=—-k(X; - X9), Fy=—k(X2— X1).

Qui «, 3, k sono costanti positive assegnate.
Si usi la parametrizzazione lagrangiana

Xi(rt) = 57"211,1(15) + rus(t), X5(s,t) = ﬁszul(t) + sus(t),

(r,s) € R%.

Si consideri il moto relativo a S.

1) Si determini l’energia cinetica lagrangiana del sistema, relativa al sistema
di riferimento S.

2) Si determini il potenziale lagrangiano del sistema, corrispondente alla
dinamica relativa al sistema di riferimento mobile S.

3) Si trovino le posizioni di equilibrio relativo al sistema di riferimento S tali
che r = —s.

4) Si scrivano le equazioni di Lagrange e si determini se ammettono soluzioni
della forma 7(t) = s(t) per ogni t > 0.

5) Si determini la componente lungo uy della reazione vincolare su X1, nel
moto generico, come funzione di r, s, 7, §, ¥, §, edi m, k, a e [.

6) Si scrivano i vincoli su X nella forma canonica f(x,t) = 0 per i vincoli
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olonomi, usando le sue coordinate cartesiane x nel sistema di riferimento
fisso (X0, (en)).

SOLUZIONE

1) Si ha dalla definizione

”}9 = 2prruy + Tus, v% = 20ssuq + Sug,
e quindi
TS = Zlob? + SIo3 = T +48%7)i + (1+45%57)37).

2) Oltre alle forze elastiche direttamente applicate, dobbiamo considerare le forze
apparenti; la forza di Coriolis pero ha componenti lagrangiane nulle, dalla teoria,
perché i moti si svolgono su un piano solidale a S che contiene anche w = aus.

11 potenziale delle forze elastiche é

k k
5= 51X = X5 =~ (5 — B5%)% + (r — 7).
Il campo di forze di trascinamento é

F. =ma*(y1us + yous),

con potenziale
2

mao
Ur = =~y +43).-

Pertanto il potenziale lagrangiano di trascinamento del sistema vale
2
mao
Ur=——
2 (

T

62T4 4 ﬁ2 34) )
Infine il potenziale lagrangiano vale

ma262

5 (r* + s1).

Us = —a(r o780 +5) 1] +

3) Si noti che la quiete relativa a S si ha proprio per (r,s) costante. Il sistema del
gradiente é

aUL
S =l = )P+ ) + 1) = KB — 92 + 5) + 2ma? B =0,
r
L
aaUS = k(r = $)[B°(r+5)* + 1] = kB2 (r — 9)*(r + 5) + 2ma’p?s* = 0.
S
Nell’ipotesi r = —s entrambe le equazioni si riducono a

—2kr + 2ma? 3213 = 2r(—k + ma?%r?) =0,

che ammette le soluzioni

[k
r=0, r=7r0:i= 777104262’ r=-rg.
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4) Dalla teoria le equazioni di Lagrange sono
%[m(l +4B°r?)¢] — dmpPri? =

—k(r = 8)[B%(r + 8)* + 1] — k% (r — 5)*(r + ) + 2ma” 51,
i[m(l +43%5%)8] — 4mB?sé* =

dt
k(r — S)[ﬂQ(T + 5)2 +1] - kﬂQ(T - 5)2(7" +38)+ 2ma’?s3 .

Se r = s entrambe si riducono alla

%[m(l 4+ 46%2%)2] — 4mpB?25% = 2ma? 223,

per z =r oz = s. Dunque ammettono soluzione r = s se e solo se i dati iniziali sono
compatibili, cioé r(0) = s(0), #(0) = $(0); infatti basta porre r(t) = s(t) = z(t) con
z soluzione dell’equazione sopra e dati iniziali corrispondenti a quelli assegnati.

5) Si ha

may =Fy + F:+ FL4f,'.

Inoltre
as = 2B8(rit +7%)uy + Fus, Fi = —k[B(r* — s*)uy + (r — s)us],
F; = ma?priug , Fé = —2mw X 'U}g = —4dmafrrus .
Dunque
foin' - us = —FL - uy = dmafrr.

6) 11 vincolo é costituito dalla parabola ruotante y» = 0, y1 = By3. Si ha quindi
3
yo= X1 ug = theh -ug = —xp sin(at) + xo cos(at) =0,
h=1

e anche
y1 — Bys = X1 -uy — B(X1 - u3)? = x1 cos(at) + zasin(at) — fzi = 0.
R.

1) Ts=2

L1+ 43%r)i? + (14 48%5%)5%].

202
D) Us=—2(r— 2B+ + 1+ Py ).

3) (0)0) ) (TO) _TO) ) (_TO’TO) ? To = \[ %2/32 :

4 [m(1 + 45%r?)7] — 4mpB2ri? =

dt
5 —k(r — s)[ﬂQ(r + 5)2 +1] - kﬂQ(T - 5)2(7" +38)+ 2ma’ 323 S
|
%[m(l +43%5%)8] — 4mB?sé* =

E(r —s)[B2(r 4+ 8)* + 1] — kB2(r — 8)*(r + 5) + 2ma?B%s> .
5) foin' - s = dmafrr .

6) — xpsin(at) +xacos(at) =0, a1 cos(at) + xgsin(at) — Br3 = 0.



