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1.

Calcolare il potenziale lagrangiano nei seguenti casi. Si ricordi che Ul è
definito a meno di una costante additiva.
Qui α, R, k, k0, k1 sono costanti positive date. La coordinata lagrangiana è
denotata da ϕ ∈ (−π, π) e le coordinate cartesiane nel sistema fisso da x.
01

Un punto materiale (X ,m) ha parametrizzazione lagrangiana

Xl(ϕ) = R cosϕe1 +R sinϕe2 .

Su di esso agisce la forza
F = α|x|x .

a

Ul(ϕ) =
α

3
R3[(cosϕ)3 + (sinϕ)3] .

b

Ul(ϕ) =
α

3
R6[(cosϕ)6 + (sinϕ)6] .

c

Ul(ϕ) = 0 .

d Nessuna delle altre.
02

Un punto materiale (X ,m) ha rappresentazione lagrangiana, per t > 0,

Xl(ϕ, t) = αt cosϕe1 + 2αt sinϕe2 .

Su di esso agisce la forza
F = −kx .

a

Ul(ϕ, t) = −
k

2
α2t2 .

b

Ul(ϕ) = −
k

2
α2[(cosϕ)2 + 4(sinϕ)2] .

c

Ul(ϕ) = −
k

2
α2t2[1 + 3(sinϕ)2] .
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d Nessuna delle altre.
03

Un’asta rigida AB di lunghezza 2L e massa M ha parametrizzazione lagran-
giana

Xl(ϕ, s) = s cosϕe1 + (R+ s sinϕ)e2 .

Qui s ∈ [−L,L] è la coordinata solidale. Sull’asta agisce la distribuzione di
forze

dF (x, s) = −(k0 + sk1)x ds .

a

Ul(ϕ) = −
2

3
k1RL3 sinϕ .

b

Ul(ϕ) = 0 .

c

Ul(ϕ) = k0RL2(cosϕ)2 .

d Nessuna delle altre.
Soluzione

I: c
Infatti la forza ha potenziale conservativo

U(x) =
α

3
|x|3 ,

per cui quello lagrangiano è

U l(ϕ) =
α

3
|Xl(ϕ)|3 =

α

3
R3 ,

ossia costante.
II: c
Infatti la forza ha potenziale conservativo

U(x) = −
k

2
|x|2 ,

per cui quello lagrangiano è

U l(ϕ) = −
k

2
|Xl(ϕ)|2 = −

k

2
[α2t2(cosϕ)2+4α2t2(sinϕ)2] = −

k

2
α2t2[1+3(sinϕ)2] .

III: a
La distribuzione del potenziale elastico è

dU(x, s) = −
k0 + sk1

2
|x|2 ds ,

e pertanto quella del potenziale lagrangiano è

dU l(ϕ, s) = −
k0 + sk1

2
|Xl(ϕ, s)|2 ds = −

k0 + sk1

2
[R2 + s2 + 2Rs sinϕ] ds .
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Dunque integrando, e ricordando che l’integrale di s e s3 su [−L,L] si annulla, si
ha

U l(s) = −
k0

2

L
∫

−L

(s2 +R2)ds−
k1

2

L
∫

−L

2Rs2 sinϕds

= −
k0

2

(2

3
L3 + 2LR2

)

− k1R
2

3
L3 sinϕ .

2.

Un corpo rigido non degenere C si muove di moto polare di polo O. Il vincolo
è liscio. T denota l’energia cinetica di C, LO il suo momento angolare (o
della quantità di moto) relativo a O e M ext

O il momento delle forze esterne
direttamente applicate relativo a O. Indichiamo anche con (uh) una terna
solidale principale in O e con ω la sua velocità angolare.
04

Sia
M ext

O = −kω ,

con k > 0 costante. Sia anche, all’istante t = 0, T (0) > 0.
a Si ha T (t) > 0 per ogni t > 0.
b Si può avere o meno T (t̄) = 0 per qualche t̄ > 0, in dipendenza della
geometria delle masse di C.
c Si ha comunque T (t̄) = 0 per qualche t̄ > 0.
d Nessuna delle altre.
05

Sia M ext
O (t) = 0 per ogni t. Si può concludere che il moto sia certamente

una precessione regolare o una rotazione?
a Sì, ma solo per particolari geometrie delle masse di C.
b Sì, sempre.
c Sì, sotto la sola ipotesi che O sia il centro di massa di C.
d Nessuna delle altre.
06

Sia M ext
O (t) = 0 per ogni t. Allora scrivendo

LO(t) =

3
∑

h=1

αh(t)uh(t) =

3
∑

h=1

βh(t)eh ,

si ha
a Le componenti αh nella base solidale sono costanti nel tempo.
b Le componenti βh nella base fissa sono costanti nel tempo.
c Né le αh né le βh sono in genere costanti.
d Nessuna delle altre.
Soluzione
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I: a
Infatti dalla teoria

dT

dt
=M ext

O · ω = −k|ω|2 ,

e

T =
1

2
σOω · ω ≥

1

2
Im|ω|2 ,

ove Im è il minimo tra i momenti d’inerzia principali in O. Pertanto

dT

dt
≥ −

2k

Im
T ,

da cui per ogni t > 0

T (t) ≥ T (0)e−
2k

Im
t > 0 .

II: a
Dalla teoria, questo è il caso se l’ellissoide d’inerzia in O ha simmetria di rotazione.
III: b
Dalla teoria, nei moti polari per inerzia LO è costante nella base fissa.

3.

Un corpo rigido non degenere C si muove di moto polare di polo O. Il vincolo
è liscio. La terna (uh) è solidale e principale in O; indichiamone con Ihh i
momenti d’inerzia. Supponiamo che

I11 < I22 < I33 .

Indichiamo con M ext
O il momento delle forze esterne direttamente applicate

relativo a O.
Qui α, β sono costanti positive date.
07

Supponiamo che per ogni t

M ext
0 (t) = αeβtu2(t) .

a Il moto può essere una rotazione intorno a u3(t), ma non intorno a u2(t).
b Il moto può essere una rotazione intorno a u2(t), ma non intorno a u3(t).
c Il moto non può essere una rotazione.
d Nessuna delle altre.
08

Supponiamo che per ogni t

M ext
0 (t) = αeβt(u2(t) + u3(t)) .

a Il moto può essere una rotazione intorno a u2(t) + u3(t), ma non intorno
a u1(t).
b Il moto può essere una rotazione intorno a u1(t), ma non intorno a u2(t)+
u3(t).
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c Il moto può essere una rotazione sia intorno a u1(t), che intorno a u2(t)+
u3(t).
d Nessuna delle altre.
09

Si assuma che ω(t) 6= 0 per ogni t. Quale delle seguenti affermazioni è vera?
a La risultante delle reazioni vincolari è nulla.
b Per ogni t̄ > 0 fissato esistono infiniti moti solidali che hanno velocità
assoluta nulla all’istante t̄.
c Può accadere che la velocità assoluta di ogni moto solidale X(t,λ), diverso
dal polo O, sia sempre diversa da zero, per ogni t e ogni λ.
d Nessuna delle altre.
Soluzione

I: b
Si sa dalla teoria che se il momento delle forze è parallelo a un asse principale,
il moto può essere una rotazione intorno a quell’asse e viceversa, se il moto è una
rotazione intorno a un asse principale, il momento deve essere parallelo a quell’asse.
II: d
Infatti u2+u3 non è principale, quindi il moto non può essere una rotazione intorno
a u2 + u3 perché il momento M ext

O ha componente normale a tale asse nulla.
Inoltre u1 è invece principale, quindi non si può avere rotazione intorno a u1, perché
allora si dovrebbe avere M ext

O parallelo a u1.
III: b
Infatti tutti i punti dell’asse istantaneo di rotazione hanno velocità nulla, quindi
vale b. La a non vale in genere.

4.

Si consideri il moto di un elemento materiale (X,m) vincolato a una curva
regolare ψ(s), con s ∈ R ascissa curvilinea e curvatura k > 0. Sul punto è
applicata direttamente la forza F .
Indichiamo con (T ,N ,B) la terna intrinseca e con α > 0 una costante data.
10

Se il vincolo è liscio, quale delle seguenti ipotesi garantisce che l’energia
cinetica resti costante?
a F è conservativa.
b F = αT .
c F = αN .
d Nessuna delle altre.
11

Se il vincolo è scabro, secondo la legge di Coulomb-Morin, con ṡ 6= 0, quale
delle seguenti è vera?
a La velocità deve annullarsi in un tempo finito.
b La reazione vincolare deve avere componente nulla lungo N .
c La forza F deve avere componente nulla lungo B.
d Nessuna delle altre.
12
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Quale delle seguenti può essere vera durante il moto, se ṡ 6= 0?
a

d
dt

(v ·N ) > 0 .

b

a · T > 0 .

c

a ·N = 0 .

d Nessuna delle altre.
Soluzione

I: c
Infatti ms̈ = F · T = 0 nel caso c, quindi ṡ si mantiene costante.
II: d
La a ovviamente non vale senza ipotesi su F . La b e la c non hanno senso.
III: b
Infatti v = ṡT e a = s̈T + kṡ2N .

5.

Un sistema di punti materiali è vincolato da vincoli olonomi regolari. La
parametrizzazione lagrangiana è z = zl(q, t), q ∈ Q, t ∈ R, z ∈ Rnc . Si
assuma la ipotesi dei lavori virtuali.
13

Lo spazio normale Nz,tf contiene in ogni istante:
a La reazione vincolare complessiva fvin ∈ Rnc .
b L’atto di moto ż ∈ Rnc del sistema.
c Gli spostamenti virtuali, se i vincoli sono fissi.
d Nessuna delle altre.
14

Le reazioni vincolari sui punti materiali del sistema
a Fanno ciascuna lavoro virtuale nullo.
b Fanno complessivamente lavoro nullo, se i vincoli sono fissi.
c Hanno risultante nulla.
d Nessuna delle altre.
15

Lo spazio degli spostamenti virtuali Vz,tf

a Dipende dalla parametrizzazione lagrangiana scelta.
b È indipendente da (z, t) se le forze sono conservative.
c Contiene gli atti di moto ż ∈ Rnc , se i vincoli sono fissi.
d Nessuna delle altre.
Soluzione

I: a
È l’ipotesi dei lavori virtuali. L’atto di moto appartiene a un traslato dello spazio
degli spostamenti virtuali, che coincide con esso se i vincoli sono fissi.
II: b
L’ipotesi dei lavori virtuali implica che il lavoro virtuale complessivo delle reazioni
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vincolari sia nullo, ma il lavoro virtuale coincide con quello effettivo se i vincoli sono
fissi. La a e la c in genere non valgono.
III: c
Lo spazio Vz,tf dipende solo dai vincoli e non dalla parametrizzazione lagrangiana,
perciò a non vale, e, dato che appunto lo spazio non dipende dalle forze, la b non
ha senso. Vale invece c, perché gli atti di moto in genere soddisfano

ż ∈ Vz,tf +
∂zl

∂t
,

ma ∂zl

∂t
= 0 se i vincoli sono fissi.

6. Si consideri il sistema mobile di riferimento S = (XO, (uh)), ove XO

coincide con l’origine del sistema di riferimento fisso e

u1 = cos(αt)e1 + sin(αt)e2 ,

u2 = − sin(αt)e1 + cos(αt)e2 ,

u3 = e3 .

Indichiamo con (yh) le coordinate in S.
Due punti materiali di uguale massa (X1,m) e (X2,m) sono vincolati alla
parabola solidale con S data da

y2 = 0 , y1 = βy2
3
.

I due punti si scambiano le forze elastiche

F 1 = −k(X1 −X2) , F 2 = −k(X2 −X1) .

Qui α, β, k sono costanti positive assegnate.
Si usi la parametrizzazione lagrangiana

Xl

1(r, t) = βr2u1(t) + ru3(t) , Xl

2(s, t) = βs2u1(t) + su3(t) ,

(r, s) ∈ R2.
Si consideri il moto relativo a S.
1) Si determini l’energia cinetica lagrangiana del sistema, relativa al sistema
di riferimento S.
2) Si determini il potenziale lagrangiano del sistema, corrispondente alla
dinamica relativa al sistema di riferimento mobile S.
3) Si trovino le posizioni di equilibrio relativo al sistema di riferimento S tali
che r = −s.
4) Si scrivano le equazioni di Lagrange e si determini se ammettono soluzioni
della forma r(t) = s(t) per ogni t > 0.
5) Si determini la componente lungo u2 della reazione vincolare su X1, nel
moto generico, come funzione di r, s, ṙ, ṡ, r̈, s̈, e di m, k, α e β.
6) Si scrivano i vincoli su X1 nella forma canonica f(x, t) = 0 per i vincoli
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olonomi, usando le sue coordinate cartesiane x nel sistema di riferimento
fisso (XO, (eh)).
Soluzione

1) Si ha dalla definizione

v1S = 2βrṙu1 + ṙu3 , v2S = 2βsṡu1 + ṡu3 ,

e quindi

T l

S =
m

2
|v1S |

2 +
m

2
|v2S |

2 =
m

2
[(1 + 4β2r2)ṙ2 + (1 + 4β2s2)ṡ2] .

2) Oltre alle forze elastiche direttamente applicate, dobbiamo considerare le forze
apparenti; la forza di Coriolis però ha componenti lagrangiane nulle, dalla teoria,
perché i moti si svolgono su un piano solidale a S che contiene anche ω = αu3.
Il potenziale delle forze elastiche è

U l

el
= −

k

2
|Xl

1
−Xl

2
|2 = −

k

2
[(βr2 − βs2)2 + (r − s)2] .

Il campo di forze di trascinamento è

F t = mα2(y1u1 + y2u2) ,

con potenziale

Ut =
mα2

2
(y2

1
+ y2

2
) .

Pertanto il potenziale lagrangiano di trascinamento del sistema vale

U l

t
=

mα2

2
(β2r4 + β2s4) .

Infine il potenziale lagrangiano vale

U l

S = −
k

2
(r − s)2[β2(r + s)2 + 1] +

mα2β2

2
(r4 + s4) .

3) Si noti che la quiete relativa a S si ha proprio per (r, s) costante. Il sistema del
gradiente è

∂U l

S

∂r
= −k(r − s)[β2(r + s)2 + 1]− kβ2(r − s)2(r + s) + 2mα2β2r3 = 0 ,

∂U l

S

∂s
= k(r − s)[β2(r + s)2 + 1]− kβ2(r − s)2(r + s) + 2mα2β2s3 = 0 .

Nell’ipotesi r = −s entrambe le equazioni si riducono a

−2kr + 2mα2β2r3 = 2r(−k +mα2β2r2) = 0 ,

che ammette le soluzioni

r = 0 , r = r0 :=

√

k

mα2β2
, r = −r0 .
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4) Dalla teoria le equazioni di Lagrange sono

d

dt
[m(1 + 4β2r2)ṙ]− 4mβ2rṙ2 =

− k(r − s)[β2(r + s)2 + 1]− kβ2(r − s)2(r + s) + 2mα2β2r3 ,

d

dt
[m(1 + 4β2s2)ṡ]− 4mβ2sṡ2 =

k(r − s)[β2(r + s)2 + 1]− kβ2(r − s)2(r + s) + 2mα2β2s3 .

Se r = s entrambe si riducono alla
d

dt
[m(1 + 4β2z2)ż]− 4mβ2zż2 = 2mα2β2z3 ,

per z = r o z = s. Dunque ammettono soluzione r = s se e solo se i dati iniziali sono
compatibili, cioè r(0) = s(0), ṙ(0) = ṡ(0); infatti basta porre r(t) = s(t) = z(t) con
z soluzione dell’equazione sopra e dati iniziali corrispondenti a quelli assegnati.
5) Si ha

ma1S = F 1 + F
1

t
+ F 1

c
+ fvin

1 .

Inoltre

a1S = 2β(rr̈ + ṙ2)u1 + r̈u3 , F 1 = −k[β(r2 − s2)u1 + (r − s)u3] ,

F 1

t
= mα2βr2u1 , F 1

c
= −2mω × v1S = −4mαβrṙu2 .

Dunque
fvin

1 · u2 = −F 1

c
· u2 = 4mαβrṙ .

6) Il vincolo è costituito dalla parabola ruotante y2 = 0, y1 = βy23 . Si ha quindi

y2 =X1 · u2 =

3
∑

h=1

xheh · u2 = −x1 sin(αt) + x2 cos(αt) = 0 ,

e anche

y1 − βy23 =X1 · u1 − β(X1 · u3)
2 = x1 cos(αt) + x2 sin(αt)− βx2

3 = 0 .

R.

1) T l

S =
m

2
[(1 + 4β2r2)ṙ2 + (1 + 4β2s2)ṡ2] .

2) U l

S = −
k

2
(r − s)2[β2(r + s)2 + 1] +

mα2β2

2
(r4 + s4) .

3) (0,0) , (r0,−r0) , (−r0, r0) , r0 :=

√

k

mα2β2
.

4)



































d

dt
[m(1 + 4β2r2)ṙ]− 4mβ2rṙ2 =

− k(r − s)[β2(r + s)2 + 1]− kβ2(r − s)2(r + s) + 2mα2β2r3 ,

d

dt
[m(1 + 4β2s2)ṡ]− 4mβ2sṡ2 =

k(r − s)[β2(r + s)2 + 1]− kβ2(r − s)2(r + s) + 2mα2β2s3 .

Sì.

5) fvin
1 · u2 = 4mαβrṙ .

6) − x1 sin(αt) + x2 cos(αt) = 0 , x1 cos(αt) + x2 sin(αt)− βx2

3
= 0 .


