Fisica Matematica, Appello del 4/04/2016, A.A. 2015/16 CIVILI

Esercizio 2. Dato il sistema dinamico

$$\dot{x} = y, \qquad \dot{y} = x^3 - x + \mu y - \beta y^3, \qquad \mu \in R, \ \beta > 0$$

Studiare la stabilita' dei punti di equilibrio con i metodi di Liapunov.

Per $\mu = 0$ e $\beta = 0$ studiare le orbite nel piano delle fasi e disegnarle con il loro verso di percorrenza.

In particolare dire per quali condizioni iniziali si hanno orbite eterocline.

Prova orale

Biforcazioni: a forchetta, tangente, transcritica, di Hopf

Soluzione

Le posizioni di equilibrio sono $P_1 = (x = 0, y = 0), P_{2,3} = (x = \pm 1, y = 0).$

La traccia e il determinante dello Jacobiano calcolato in (0,0) sono: $TrA = \mu$, detA = 1 > 0. Ne segue che P_1 e' instabile per $\mu > 0$, asintoticamente stabile per $\mu < 0$ e per $\mu = 0$ il primo metodo di L- non da informazioni sulla stabilita'.

La traccia e il determinante dello Jacobiano calcolato in $P_{2,3}$ sono: $TrA = \mu$, detA = -2 < 0. Ne segue che entrambi i punti sono instabili $\forall \mu$

Il sistema e' di tipo meccanico non conservativo e l'energia

$$E(x,y) = \frac{1}{2}y^2 + V(x), \qquad V(x) = -\frac{1}{4}x^4 + \frac{1}{2}x^2$$

e' una buona funzione di Liapunov per il punto P_1 quando $\mu=0$ Infatti tale funzione soddisfa le ipotesi del teorema di Liapunov sulla stabilita' poiche'

- 1. E(0,0) = 0
- 2. H(x,y) > 0 in un intorno del punto P_1 perche' la funzione V(x) possiede un minimo in tale punto
- 3. $\dot{E}(x,y) = \nabla E \cdot \underline{F} = -\beta y^4 \le 0$

Per $\mu = 0$, $\beta = 0$ il sistema e' di tipo meccanico conservativo con energia $E(x,y) = \frac{1}{2}y^2 + V(x)$

Graficando la funzione V(x) si studiano le orbite nel piano delle fasi. Per $0 < E < V(\pm 1)$ e $x_0 \in [x_-, x_+]$ dove x_\pm sono le radici dell'equazione E - V(x) = 0, si hanno orbite periodiche.

Per $E = V(\pm 1) = \frac{1}{4}$ e $x_0 \in (-1, 1)$ si hanno due orbite omocline.