NOME.......COGNOME......MATRICOLA.....ANNO DI CORSO....

Fisica Matematica, Appello del 6/02/2017, A.A. 2016/17 **CIVILI**

Esercizio. Dato un sistema unidimensionale conservativo di energia potenziale

$$V(x) = x^3 - \alpha x^2$$

studiare le orbite nel piano delle fasi al variare di α .

In particolare per $\alpha > 0$ dire per quali condizioni iniziali si ha un'orbita omoclina e per $\alpha < 0$ per quali valori della velocita' si raggiunde la posizione x=0 partendo dalla posizione iniziale $x_0=\alpha$

Soluzione

Le posizioni di equilibrio sono x = 0 e $x = \frac{2\alpha}{3}$.

Per $\alpha > 0$: x = 0 e' instabile e $x = \frac{2\alpha}{3}$ stabile. Si ha un'orbita omoclina per E = 0 e per $x_0 \in (0, \alpha]$.

Per $\alpha<0$: $x=\frac{2\alpha}{3}$ e' instabile e x=0 stabile. Partendo da $x_0=\alpha$ si raggiunge la posizione x=0 per

$$\frac{1}{2}\dot{x}_0^2 + V(x_0) > V(\frac{2\alpha}{3})$$

cioe' per $\dot{x}_0 > \sqrt{\frac{-8\alpha^3}{27}}$