	NOME	COGNOME	Anno di	Corso
--	------	---------	---------	-------

Fisica Matematica, Appello del 13/01/2015, A.A. 2014/2015 CIVILI

Esercizio 1. In un piano orizzontale π , un disco omogeneo di massa M e raggio r e' vincolato a rotolare senza strisciare su una circonferenza fissa del piano di centro l'origine e raggio R. Un punto P di massa m e' vincolato senza attrito a scorrere lungo l'asse verticale Oy del piano.

Tra il punto P e il centro C del disco agisce una forza elastica di costante k > 0. Sul disco agisce una coppia di forze di momento $\underline{M} = -frsen\theta\underline{k}$ dove θ e' l'angolo che l'asse orizzontale Ox del piano forma con OC, \underline{k} e' il versore dell'asse Oz ortogonale al piano e f > 0.

Assunte come coordinate lagrangiane l'ascissa y del punto P e l'angolo θ , si chiede:

- 1) Calcolare le posizioni di equilibrio del sistema e determinarne il carattere.
- 2) Scrivere la Lagrangiana dei piccoli moti attorno ad una posizione di equilibrio stabile, le equazioni dei piccoli moti e calcolare le frequenze nel caso in cui $M = \frac{8}{3}m$ e f = 4k(R-r).
- 1. Si risponda ai punti precedenti spiegando, in modo conciso, il ragionamento seguito e i teoremi applicati, verificando che le ipotesi di tali teoremi sono soddisfatte per il sistema in esame.

SOLUZIONE

1. Dal vincolo di puro rotolamento si ha

$$\underline{v}_C = (R - r)\dot{\theta}\underline{t} = \underline{\omega} \wedge TC$$

essendo \underline{t} il versore tangente all'orbita del centro del disco.

Ne segue che $\underline{\omega} = -\frac{R-r}{r}\dot{\theta}\underline{k}$.

L'energia cinetica e' data da

$$T = \frac{1}{2}m\dot{y}^2 + \frac{1}{2}M(R-r)^2\dot{\theta}^2 + \frac{1}{2}\frac{Mr^2}{2}\omega^2 = \frac{1}{2}m\dot{y}^2 + \frac{3}{4}M(R-r)^2\dot{\theta}^2$$

2. L'energia potenziale e' data da $(dL_c = \underline{M} \cdot \underline{\omega} dt$. Cioe' $L_c = -f(R-r)cos\theta)$

$$V(x,\theta) = f(R-r)\cos\theta + \frac{1}{2}k \left(y^2 - 2(R-r)y\sin\theta\right)$$

e le posizioni di equilibrio sono

$$E_1(y=0,\theta=0),\ E_2(y=0,\theta=\pi),\ E_3(y=(R-r)\sqrt{1-\lambda^2},\theta=\arccos(-\lambda)),\ E_4(y=-y_3,\theta=2\pi-\theta_3)$$

 $E_3,\ E_4$ esistono solo se $\lambda=\frac{f}{k(R-r)}<1.$

 E_1 e' instabile $\forall \lambda$, E_2 e' stabile se $\lambda > 1$ cioe' se non esistono E_3 ed E_4 , e E_3 , E_4 sono stabili quando esistono.

3. La Lagrangiana dei piccoli moti attorno alla posizione di equilibrio E_2 , stabile per $\lambda>1$ e' data

$$\tilde{L} = \frac{1}{2}(m\dot{\eta}_1^2 + \frac{3M(R-r)^2}{2}\dot{\eta}_2^2) - \frac{1}{2}(k\eta_1^2 + 2(k(R-r)\eta_1\eta_2 + f(R-r))\eta_2^2)$$

 $con \eta_1 = y, \eta_2 = \theta - \pi.$

Le equazioni dei piccoli moti sono

$$m\ddot{\eta}_1 + k\eta_1 + k(R-r)\eta_2 = 0, \quad \frac{3}{2}M(R-r)^2\ddot{\eta}_2 + k(R-r)\eta_1 + f(R-r)\eta_2 = 0$$

le soluzioni di $det(V - \lambda T) = 0$, sono $\lambda_1 = k/2m$, $\lambda_2 = 3k/2m$