1 Harmonic Functions

1.1 Definition in an open set of \mathbb{R}^{2}

A function f definited in an open set A of \mathbb{R}^{2} and twice continuously differentiable in A is harmonic in A if satisfies the following partial differential equation:

$$
f_{x x}(x, y)+f_{y y}(x, y)=0 \quad(x, y) \in A
$$

The above equation is called Laplace's equation. A function is harmonic if it satisfies Laplace's equation.

The operator $\Delta=\nabla^{2}$ is called the Laplacian $\Delta f=\nabla^{2} f$ the laplacian of f. Constant functions and linear functions are harmonic functions. Many other functions satisfy the equation.

As example, we observe that in all the space \mathbb{R}^{2} the following functions are harmonic

$$
\begin{gathered}
f(x, y)=x^{2}-y^{2} \\
f(x, y)=\ln \left(x^{2}+y^{2}\right) \\
f(x, y)=e^{x} \sin y \\
f(x, y)=e^{x} \cos y
\end{gathered}
$$

Recall

$$
e^{z}=e^{x} \cos y+i e^{x} \sin y
$$

From complex analysis we have
Let $z=x+i y$ and $f(z)=u(x, y)+i v(x, y)$.
If $f(z)=u(x, y)+i v(x, y)$ satisfies the Cauchy-Riemann equations on a region A then both u and v are harmonic functions on A. This is a consequence of the Cauchy-Riemann equations. Since $u_{x}=v_{y}$ we have $u_{x x}=v_{y x}$. Likewise, $u_{y}=-v_{x}$ implies $u_{y y}=-v_{x y}$. Since we assume $v_{x}=v_{y x}$ we have $u_{x x}+u_{y y}=0$. Therefore u is harmonic. Similarly for v.

As example we may consider

$$
e^{z}=e^{x} \cos y+i e^{x} \sin y
$$

1.2 Poisson formula in the circle

We consider the Laplace's equation in the circle $x^{2}+y^{2}<R^{2}$, with a prescribed function at the boundary $x^{2}+y^{2}=R^{2}$.

$$
\begin{gathered}
f_{x x}(x, y)+f_{y y}(x, y)=0 \quad x^{2}+y^{2}<R^{2} \\
f(x, y)=g(x, y) \quad x^{2}+y^{2}=R^{2}
\end{gathered}
$$

This is the Dirichlet problem for the Laplace equation in the circle
Since we are looking for the solution in the circle we consider polar coordinates
$F(r, \theta)=f(r \cos \theta, r \sin \theta)$
Solving in polar coordinates we get

$$
\begin{gathered}
F_{r r}(r \theta)+\frac{1}{r} F_{r}(r, \theta)+\frac{1}{r^{2}}(r \cos \theta, r \sin \theta)=0, \\
0 \leq r<R 0 \leq \theta \leq 2 \pi \\
F(R, \theta)=G(\theta)=g(r \cos \theta, r \sin \theta)
\end{gathered}
$$

$0 \leq \theta \leq 2 \pi$
We assume that the solution may be obtained as a product of two functions, one depending on r and the other one on θ.

$$
F(R, \theta)=H(r) K(\theta)
$$

K is bounded and 2π periodic, and H bounded.
By substitution since K is assumed bounded and 2π periodic, we have
(i) $K^{\prime \prime}(\theta)=-m^{2} K(\theta) K(\theta)=a_{m} \cos (m \theta)+b_{m} \sin (m \theta)$
(ii) $r^{2} H^{\prime \prime}(r)+r H^{\prime}(r)-m^{2} H(r)=0$

This is the most common Cauchy-Euler equation appearing in a number of physics and engineering applications, such as when solving Laplace's equation in polar coordinates.

Assuming the solution of the form r^{α} and substituting into the equation
(ii) $\alpha(\alpha-1) r^{\alpha}+\alpha r^{\alpha}-m^{2} r^{\alpha}=0$

$$
\alpha-m^{2}=0
$$

Since H is bounded we obtain the solutions
$F_{m}(r, \theta)=r^{m}\left(a_{m} \cos (m \theta)+b_{m} \sin (m \theta)\right)$,
and

$$
F(r, \theta)=a_{0}+\sum_{k=1}^{+\infty} r^{m}\left(a_{m} \cos (m \theta)+b_{m} \sin (m \theta)\right)
$$

Now taking the Fourier expansion of G

$$
G(\theta)=\frac{1}{2} \alpha_{0}+\sum_{m=1}^{+\infty}\left(\alpha_{m} \cos (m \theta)+\beta_{m} \sin (m \theta)\right)
$$

α_{m} and β_{m} are the Fourier coefficients of the function G

$$
\begin{aligned}
& \alpha_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} G(\phi) \cos (m \phi) d \phi \\
& \beta_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} G(\phi) \sin (m \phi) d \phi
\end{aligned}
$$

Observe that from $F(R, \theta)=G(\theta)$. Hence we have the following

$$
a_{0}=\frac{1}{2} \alpha_{0} \quad a_{m}=R^{-m} \alpha_{m} \quad b_{m}=R^{-m} \beta_{m}
$$

Substituting the Fourier coefficients into the F

$$
F(r, \theta)=\frac{1}{\pi} \int_{0}^{2 \pi} G(\theta)\left[\frac{1}{2}+\sum_{m=1}^{+\infty}\left(\frac{r}{R}\right)^{m} \cos (m(\phi-\theta))\right] d \theta
$$

Next we observe

$$
\begin{gathered}
\sum_{m=1}^{+\infty}\left(\frac{r}{R}\right)^{m} e^{i m(\phi-\theta)}= \\
\frac{1}{1-\frac{r}{R} e^{i(\phi-\theta)}}-1=\frac{1}{1-\frac{r}{R} e^{i(\phi-\theta)}}=\frac{R}{R-r \cos (\phi-\theta)-i r \sin (\phi-\theta)}
\end{gathered}
$$

Then

$$
\begin{gathered}
\frac{R(R-r \cos (\phi-\theta)+i r \sin (\phi-\theta))}{(R-r \cos (\phi-\theta)-i r \sin (\phi-\theta))(R-r \cos (\phi-\theta)+i r \sin (\phi-\theta))}= \\
\frac{\left.R^{2}-r R \cos (\phi-\theta)-i R r \sin (\phi-\theta)\right)}{\left(R^{2}-2 R r \cos (\phi-\theta)\right)+r^{2}}
\end{gathered}
$$

Taking the real part of the above computation

$$
\begin{aligned}
F(r, \theta) & =\frac{1}{\pi} \int_{0}^{2 \pi} G(\phi)\left(\frac{R^{2}-r R \cos (\phi-\theta)}{R^{2}-2 R r \cos (\phi-\theta)+r^{2}}-\frac{1}{2}\right) d \phi= \\
& =\frac{R^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{G(\phi)}{R^{2}-2 R r \cos (\phi-\theta)+r^{2}} d \phi
\end{aligned}
$$

This is the Poisson formula for the Dirichlet problem of the Laplacian in the circle.

