
1 Harmonic Functions

1.1 Definition in an open set of R2

A function fdefinited in an open set A of R2 and twice continuously differentiable in A is
harmonic in A if satisfies the following partial differential equation:

fxx(x, y) + fyy(x, y) = 0 (x, y) ∈ A

The above equation is called Laplace’s equation. A function is harmonic if it satisfies
Laplace’s equation.

The operator ∆ = ∇2 is called the Laplacian ∆f = ∇2f the laplacian of f . Constant
functions and linear functions are harmonic functions. Many other functions satisfy the
equation.

As example, we observe that in all the space R2 the following functions are harmonic

f(x, y) = x2 − y2

f(x, y) = ln(x2 + y2)

f(x, y) = ex sin y

f(x, y) = ex cos y

Recall
ez = ex cos y + iexsiny.

From complex analysis we have
Let z = x+ iy and f(z) = u(x, y) + iv(x, y).
If f(z) = u(x, y) + iv(x, y) satisfies the Cauchy-Riemann equations on a region A then

both u and v are harmonic functions on A. This is a consequence of the Cauchy-Riemann
equations. Since ux = vy we have uxx = vyx. Likewise, uy = −vx implies uyy = −vxy. Since
we assume vx = vyx we have uxx + uyy = 0. Therefore u is harmonic. Similarly for v.

As example we may consider

ez = ex cos y + iexsiny

.

1.2 Poisson formula in the circle

We consider the Laplace’s equation in the circle x2 + y2 < R2, with a prescribed function at
the boundary x2 + y2 = R2.

fxx(x, y) + fyy(x, y) = 0 x2 + y2 < R2

f(x, y) = g(x, y) x2 + y2 = R2.

This is the Dirichlet problem for the Laplace equation in the circle
Since we are looking for the solution in the circle we consider polar coordinates
F (r, θ) = f(r cos θ, r sin θ)
Solving in polar coordinates we get
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Frr(r θ) +
1

r
Fr(r, θ) +

1

r2
(r cos θ, r sin θ) = 0,

0 ≤ r < R 0 ≤ θ ≤ 2π

F (R, θ) = G(θ) = g(r cos θ, r sin θ)

0 ≤ θ ≤ 2π
We assume that the solution may be obtained as a product of two functions, one depending

on r and the other one on θ.

F (R, θ) = H(r)K(θ)

K is bounded and 2πperiodic, and H bounded.
By substitution since K is assumed bounded and 2πperiodic, we have
(i) K ′′(θ) = −m2K(θ) K(θ) = am cos(mθ) + bm sin(mθ)
(ii) r2H ′′(r) + rH ′(r)−m2H(r) = 0
This is the most common Cauchy-Euler equation appearing in a number of physics and

engineering applications, such as when solving Laplace’s equation in polar coordinates.
Assuming the solution of the form rα and substituting into the equation
(ii) α(α− 1)rα + αrα −m2rα = 0

α−m2 = 0

.
Since H is bounded we obtain the solutions
Fm(r, θ) = rm(am cos(mθ) + bm sin(mθ)),
and

F (r, θ) = a0 +
+∞∑
k=1

rm(am cos(mθ) + bm sin(mθ))

Now taking the Fourier expansion of G

G(θ) =
1

2
α0 +

+∞∑
m=1

(αm cos(mθ) + βm sin(mθ))

αm and βm are the Fourier coefficients of the function G

αm =
1

π

∫ 2π

0
G(φ) cos(mφ)dφ

βm =
1

π

∫ 2π

0
G(φ) sin(mφ)dφ

Observe that from F (R, θ) = G(θ). Hence we have the following

a0 =
1

2
α0 am = R−mαm bm = R−mβm

Substituting the Fourier coefficients into the F
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F (r, θ) =
1

π

∫ 2π

0
G(θ)[

1

2
+

+∞∑
m=1

(
r

R

)m
cos(m(φ− θ))]dθ,

Next we observe

+∞∑
m=1

(
r

R

)m
eim(φ−θ) =

1

1− r
Re

i(φ−θ) − 1 =
1

1− r
Re

i(φ−θ) =
R

R− r cos (φ− θ)− ir sin (φ− θ)

Then

R(R− r cos (φ− θ) + ir sin (φ− θ))
(R− r cos (φ− θ)− ir sin (φ− θ))(R− r cos (φ− θ) + ir sin (φ− θ))

=

R2 − rR cos (φ− θ)− iRr sin (φ− θ))
(R2 − 2Rr cos (φ− θ)) + r2

Taking the real part of the above computation

F (r, θ) =
1

π

∫ 2π

0
G(φ)

(
R2 − rR cos (φ− θ)

R2 − 2Rr cos (φ− θ) + r2
− 1

2

)
dφ =

=
R2 − r2

2π

∫ 2π

0

G(φ)

R2 − 2Rr cos (φ− θ) + r2
dφ

This is the Poisson formula for the Dirichlet problem of the Laplacian in the circle.
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