APPUNTI DI ANALISI MATEMATICA L'INTEGRALE DI LEBESGUE

VILMOS KOMORNIK E PAOLA LORETI

RIASSUNTO. L'integrale di Lebesgue, introdotto cento anni fa, è uno strumento fondamentale in quasi tutte le parti dell'analisi e della matematica applicata. Presentiamo qui alcune delle nozioni e dei risultati fondamentali, seguendo un'impostazione dovuta a Riesz. Dimostrazioni complete, molti altri risultati e commenti storici sono dati in [4], [5] e [6].

1. Funzioni a variazione limitata

Nel 1881, Jordan introdusse e studiò la classe delle funzioni il cui grafico ha lunghezza finita.

1.1. Definizione e proprietà elementari.

Definizione. Sia I = [a, b] un intervallo chiuso. ¹ Una funzione $f: I \to \mathbb{R}$ è a *variazione limitata*, se esiste un numero T tale che

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le T$$

per ogni suddivisione finita

$$a = x_0 < \dots < x_n = b$$

dell'intervallo I. L'estremo superiore di queste costanti T è detta vari-azione totale di f ed è denotata da T(f). L'insieme di queste funzioni è denotata con BV(I) (BV viene dal termine inglese "bounded variation").

Esempi.

 \bullet Ogni funzione monotona $f:[a,b]\to\mathbb{R}$ è a variazione limitata, e

$$T(f) = |f(b) - f(a)|.$$

• Ogni funzione $f \in BV(I)$ è limitata.

L'intervallo può essere *illimitato*, e.g. $[0,\infty], [-\infty,2]$ o $[-\infty,\infty]$.

• Consideremo il caso in cui l'intervallo [a,b] è limitato. Segue facilmente dalla definizione che $f \in BV(I)$ se e solo se il suo grafico ha lunghezza finita; in particolare, ogni funzione Lipschitziana $f:[a,b] \to \mathbb{R}$ è a variazione limitata, e

$$T(f) \le L|b-a|$$

dove L è la costante di Lipschitz. Utilizzando questa equivalenza, si possono costruire funzioni limitate non a variazione limitata. Per esempio, la funzione continua

$$f(x) := \begin{cases} x \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

non appartiene a BV(I) per ogni intervallo I contenente 0.

• Esempi interessanti sono le cosiddette funzioni salto. Fissiamo una successione finita (o infinita) (x_n) in I e due serie numeriche assolutamente convergenti.

$$\sum u_n$$
 e $\sum v_n$.

Sia

$$f_n(x) := \begin{cases} 0 & \text{se } x < x_n, \\ u_n & \text{se } x = x_n, \\ u_n + v_n & \text{se } x > x_n. \end{cases}$$

Allora la serie

$$\sum f_n(x)$$

converge uniformemente ad una funzione $s \in BV(I)$ la cui variazione totale è uguale a

$$T(s) = \sum |u_n| + |v_n|.$$

Si può facilmente verificare che s ha un salto a sinistra u_n e un salto a destra v_n nel punto x_n , e che s è continua negli altri punti.

Definizione. Sia M uno spazio vettoriale di funzioni definite su qualche intervallo I. Se $|f| \in M$ per ogni $f \in M$, allora M è detto uno spazio reticolato.

Osservazione. Se M è uno spazio reticolato, allora per tutte le funzioni $f,g\in M$ abbiamo anche

$$\max\{f,g\} \in M \quad e \quad \min\{f,g\} \in M$$

perchè

$$\max\{f,g\} = \frac{f + g + |f - g|}{2} \quad \text{e} \quad \min\{f,g\} = \frac{f + g - |f - g|}{2}.$$

Proposizione 1.1.

- (a) BV(I) è uno spazio reticolato.
- (b) Se $f, g \in BV(I)$, allora $fg \in BV(I)$. Se, in più inf |g| > 0, allora $f/g \in BV(I)$.
- (c) (Scomposizione di Jordan) Ogni $f \in BV(I)$ può essere scritta come la differenza di due funzioni crescenti. ²

Dimostrazione. Solo il teorema di Jordan è non ovvio. Se $f \in BV(I)$, allora la restrizione di f ad ogni sottointervallo è anche di BV. Denotiamo con t(c) la variazione totale della restrizione di f su [a, c], $a < c \le b$, e poniamo t(a) = 0. Allora t e t - f sono funzioni crescenti la cui differenza è uguale ad f.

1.2. Continuità e differenziabilità. Alcune proprietà delle funzioni salto rimangono valide per tutte le funzioni a variazione limitata. Per quanto riguarda la continuità, abbiamo che

Proposizione 1.2. $Sia\ f \in BV(I)$.

- (a) f ha limite destro e sinistro in ogni punto, e l'insieme di discontinuità è un insieme numerabile.
- (b) f ha un'unica decomposizione f = g + s con $g, s \in BV(I)$, dove g è continua e s una funzione salto. In più, se f è crescente, allora g e s sono anche crescenti.

Dimostrazione. La dimostrazione è semplice per funzioni crescenti. Il caso generale segue applicando il teorema di Jordan. \Box

Riguardo la differenziabilità, la situazione non è così semplice : f potrebbe non avere derivata in un insieme non numerabile di punti. Allo scopo di chiarire la situazione, necessitiamo della seguente definizione:

Definizione. (Harnack) Un insieme $E \subset \mathbb{R}$ è trascurabile se per ogni $\varepsilon > 0$ può essere ricoperto da una succesione finita o numerabile di intervalli la cui lunghezza totale è minore di ε .

Esempi.

• Ogni insieme finito o numerabile di punti è un insieme di misura nulla.

 $^{^2}$ Utilizzeremo il termine $\it crescente$ per indicare la crescenza debole (invece di $\it non \, decrescente$).

- Un sottoinsieme trascurabile è esso stesso trascurabile.
- L'unione di un numero finito o numerabile di insiemi trascurabili è esso stesso un insieme trascurabile.
- L'insieme triadico di Cantor è un insieme trascurabile non numerabile.

Definizione. Una proprietà è vera *quasi ovunque* (q.o.) se l'insieme dei punti dove non sussiste è un insieme trascurabile.

Teorema 1.3. (Lebesgue) Ogni $f \in BV(I)$ è differenziabile quasi ovunque.

Dimostrazione. È sufficiente considerare funzioni crescenti: il caso generale seguirà applicando il teorema di Jordan. Una dimostrazione elementare è data in [4], [5] o [6]. □

Osservazione. Il teorema è ottimale nel senso seguente: per ogni insieme $E \subset I$ di misura nulla, esiste una funzione crescente $f: I \to \mathbb{R}$ che non è differenziabile in nessun punto di E.

Se $f \in BV(I)$, allora f' non è necessariamente integrabile secondo Riemann. Comunque, è sempre integrabile in un senso più generale. Andiamo ad introdurre questa nuova nozione nella sezione seguente.

2. Integrale di Lebesgue in \mathbb{R}

Nella sezione sviluppiamo la teoria dell'integrale di Lebesgue per funzioni di variabile reale definite su \mathbb{R} . Diremo che una funzione reale f, definita su un sottinsieme D è integrabile se la funzione $g:\mathbb{R}\to\mathbb{R}$ definita da

$$g(x) := \begin{cases} f(x) & \text{se } x \in D, \\ 0 & \text{altrimenti} \end{cases}$$

è integrabile, e definiamo l'integrale di fuguale a quello di q.

2.1. Integrale di funzioni a gradino.

Definizione. Una funzione $\varphi: \mathbb{R} \to \mathbb{R}$ è una funzione a gradino se ha un valore costante c_k in ciascun dei sottointervalli aperti (in numero finito) i_k di lunghezze finite $|i_k|$ e ed è nulla fuori dai corrispondenti intervalli chiusi. (Il valore di f nei punti finali di questi intervalli sono arbitrari.) Denotiamo con C_0 la classe delle funzioni a gradino.

Definiamo l'integrale di una funzione a gradino tramite la formula

$$\int \varphi \ dx = \sum c_k |i_k|.$$

Per fornire le proprietà elementari dell'integrale, ci sarà utile introdurre la seguente nozione.

Definizione. Sia M uno spazio reticolato. Una forma lineare $L: M \to \mathbb{R}$ si dice *positiva* se $Af \geq 0$ ogni qualvolta $f \geq 0$.

Proposizione 2.1.

- (a) La classe C_0 è uno spazio reticolato.
- (b) L'integrale è una forma lineare positiva su C_0 .

Osserviamo due importanti proprietà di questo integrale. La prima è una semplice variante di un teorema classico di Dini:

Lemma 2.2. Per ogni successione (φ_n) di funzioni a gradino che decrescono a 0 quasi ovunque, la successione di valori dei loro integrali tende anche a zero.

La seconda è legata alla compattezza degli intervalli chiusi limitati:

Lemma 2.3. Se per una successione crescente di funzioni a gradino (φ_n) , i valori dei loro integrali hanno una costante di limitatezza uniforme, allora la successione (φ_n) tende ad un numero finito quasi ovunque.

2.2. La classe C_1 . Estendiamo la nozione di integrale ai limiti di successioni crescenti di funzioni a gradino.

Definizione. Denotiamo con C_1 la classe di funzioni $f: \mathbb{R} \to \mathbb{R}$ che sono limiti quasi ovunque delle successioni (φ_n) riferite al lemma 2.3.

Definiamo l'integrale di f dalla formula

$$\int f \ dx := \lim \int \varphi_n \ dx.$$

Osservazioni.

- L'esistenza di questo limite segue dal lemma 2.3.
- Il seguente lemma implica che questo limite non dipende dalla particolare scelta di funzione a gradino φ_n .
- Poichè $C_0 \subset C_1$, noi dobbiamo dimostrare che la nuova definizione di integrale coincide con la precedente se f è una funzione a gradino. Questo segue scegliendo $\varphi_n = f$ per ogni n.
- Segue da questa definizione che se $f \in C_1$ e f = g quasi ovunque, allora $g \in C_1$, e f e g hanno lo stesso integrale.

Lemma 2.4. Siano (φ_n) e (ψ_n) due successioni crescenti di funzioni a gradino tali che i corrispondenti integrali hanno una costante di limitatezza uniforme. Se

$$\lim \varphi_n \leq \lim \psi_n$$

quasi ovunque, allora

$$\lim \int \varphi_n \ dx \le \lim \int \psi_n \ dx.$$

Dimostrazione. È una conseguenza del lemma 2.2.

Ricordiamo le principali proprietà dell'integrale su C_1 .

Proposizione 2.5.

(a) Se $f, g \in C_1$ e $c \ge 0$, allora $f + g, \quad cf, \quad \max\{f, g\}, \quad \min\{f, g\} \in C_1.$

(b) Se
$$f, g \in C_1$$
 e $c > 0$, allora
$$\int f + g \, dx = \int f \, dx + \int g \, dx,$$

$$\int cf \, dx = c \int f \, dx.$$

(c) L'integrale è monotono su C_1 : se $f \geq g$ quasi ovunque su \mathbb{R} , allora

$$\int f \ dx \ge \int g \ dx.$$

L'integrale su C_1 è già più generale che l'integrale di Riemann perchè la classe C_1 contiene la classe di funzioni integrabili secondo Riemann. Più precisamente, abbiamo che

Proposizione 2.6. Sia $f : \mathbb{R} \to \mathbb{R}$. Le seguenti tre proprietà sono equivalenti:

- (a) f è integrabile secondo Riemann;
- (b) f è limitata e le sue discontinuità formano un insieme trascurabile:
 - (c) Sia f che -f appartengono alla classe C_1 .
- 2.3. La classe $C_2 = L^1$. Completiamo la costruzione dell'integrale di Lebesgue.

Definizione. Denotiamo con C_2 la classe di funzioni della forma $f_1 - f_2$ dove $f_1, f_2 \in C_1$.

Noi definiamo i loro integrali tramite la formula

$$\int f_1 - f_2 \ dx := \int f_1 \ dx - \int f_2 \ dx.$$

Osservazioni.

• Si può facilmente verificare che l'integrale non dipende dalla particolare scelta di f_1 e f_2 , cioè, se

$$f_1 - f_2 = g_1 - g_2$$
 con f_1 , f_2 , g_1 , $g_2 \in C_1$,

allora

$$\int f_1 dx - \int f_2 dx = \int g_1 dx - \int g_2 dx.$$

Infatti, questo segue dalla proposizione 2.5 della sezione precedente perchè

$$f_1 + g_2 = g_1 + f_2$$

- Anche, si può facilmente verificare che $C_1 \subset C_2$ e che per $f \in C_1$ la nuova definizione coincide con l'altra (segua scegliendo $f_2 = 0$).
- Finalmente, se $f \in C_2$ e f = g quasi ovunque, allora $g \in C_2$ gli integrali di f e g sono uguali.

La proposizione 2.1 della sezione 2.1 rimane valida per la classe C_2 invece di C_0 :

Proposizione 2.7.

- (a) La classe C_2 è uno spazio reticolato.
- (b) L'integrale è una forma lineare positiva su C_2 .

La classe C_2 contiene la classe C_0 . Il prossimo risultato mostra che le funzioni a gradino in un certo senso sono dense in C_2 .

Proposizione 2.8. Sia $f \in C_2$. Allora esiste una successione (φ_n) in C_0 tale che φ_n tende a f quasi ovunque, e

$$\int |f - \varphi_n| \ dx \to 0.$$

Si potrebbe tentare di generalizzare ulteriormente l'integrale ripetendo il precedente processo partendo con C_2 invece di C_0 . È una sorpresa osservare che non si ottengono nuove funzioni integrabili seguendo questa strada.

Teorema 2.9. (Beppo Levi) Sia (f_n) una successione crescente in C_2 tale che i corrispondenti integrali hanno una costante di limitatezza comune. Allora la successione (f_n) tende a una funzione $f \in C_2$ quasi ovunque, e

$$\int f_n \ dx \to \int f \ dx.$$

Osservazione. Questa è una generalizzazione del lemma 2.3.

Formuliamo alcune semplici ma importanti conseguenze di questo teorema.

Corollario 2.10.

(a) Sia (g_n) una successione in C_2 tale che la serie numerica

$$\sum_{n=1}^{\infty} \int |g_n| \ dx$$

converge. Allora la serie

$$\sum_{n=1}^{\infty} g_n$$

converge quasi uniformemente a una funzione $g \in C_2$, e

$$\sum_{n=1}^{\infty} \int g_n \ dx = \int g \ dx.$$

(b) Se $g \in C_2$ abbiamo

$$\int |g| \ dx = 0$$

se e solo se g = 0 quasi ovunque.

(c) Sia (f_n) una successione crescente in C_2 , convergente a una funzione $f \in C_2$ quasi ovunque. Allora

$$\int f_n \ dx \to \int f \ dx.$$

Definizione. Nel seguito gli elementi di C_2 sono anche chiamati *integrabili secondo Lebesgue* (o semplicemente funzioni *integrabili*), e l'integrale appena definito *integrale di Lebesgue*. In più, seguendo le notazioni usuali, scriviamo L^1 invece di C_2 .

2.4. **Teoremi di Lebesgue, Fatou e Riesz-Fischer.** In questa sottosezione formuliamo tre teoremi fondamentali. Questi giocano un ruolo fondamentale in tutte le applicazioni.

Uno dei più grandi vantaggi della teoria di Lebesgue rispetto alla teoria di Riemann è la sua semplicità nel trattare successioni di integrali. La successione $f_n(x) = n|x|e^{-n|x|}$ mostra che il teorema di Beppo Levi non si applica per tutte le successioni convergenti quasi ovunque. Si ha comunque alcuni altri risultati, senza assumere la monotonia della successione (f_n) .

Teorema 2.11. (Lebesgue, Convergenza dominata) Sia (f_n) una successione di funzioni integrabili, convergenti a una funzione f quasi ovunque. Assumiamo che esista una funzione integrabile g tale che

$$|f_n| \le g \quad quasi \ ovunque$$

per ogni n. Allora f è integrabile e

$$\int f_n \ dx \to \int f \ dx.$$

Esempio. La successione $f_n(x) = n|x|e^{-n|x|}$ non soddisfa le ipotesi del teorema di Beppo Levi, ma soddisfa le ipotesi del teorema di Lebesgue. Infatti, $f_n(x) \to 0$ e

$$|f_n(x)| \le g(x) := \begin{cases} e^{-1} & \text{se } |x| \le 1, \\ |x|e^{-|x|} & \text{se } |x| \ge 1 \end{cases}$$

ovunque, e la funzione g è integrabile. Applicando il teorema di Lebesgue otteniamo che

$$\int n|x|e^{-n|x|} \ dx \to 0.$$

In alcuni casi, quando il teorema di Lebesgue non si può applicare, il seguente risultato fornisce ancora informazioni utili.

Teorema 2.12. (Fatou) Sia (f_n) una successione di funzioni non negative, integrabili, convergente a qualche funzione f quasi ovunque. Se esiste una costante A tale che

$$\int f_n \ dx \le A \quad for \ all \quad n,$$

allora f è integrabile e

$$\int f \ dx \le A.$$

Si può verificare che la formula

$$||f||_1 := \int |f| \ dx$$

definisce una seminorma in L^1 . In più, se identifichiamo due funzioni se queste sono uguali quasi ovunque, allora L^1 diventa uno spazio normato. Il seguente risultato fondamentale mostra che il criterio classico di Cauchy sussiste anche in L^1 , cosicchè L^1 è uno spazio di Banach.

Teorema 2.13. (Riesz-Fischer) Sia (f_n) una successione di funzioni integrabili, verificanti

$$\int |f_m - f_n| \ dx \to 0 \quad per \quad m, n \to \infty.$$

Allora esiste una funzione integrabile f tale che

$$\int |f_n - f| \ dx \to 0 \quad per \quad n \to \infty.$$

2.5. **Misure.** La seguente definizione è motivata dall'importanza delle funzioni a gradino e dalla convergenza quasi ovunque.

Definizione. Una funzione $f: \mathbb{R} \to \mathbb{R}$ è misurabile se esiste una successione (f_n) di funzioni a gradino, convergenti quasi ovunque a f.

Proposizione 2.14.

- (a) La classe delle funzioni misurabili è uno spazio reticolato.
- (b) Se f e g sono misurabili, allora fg è anche misurabile. In più, se $g \neq 0$ quasi ovunque, allora f/g è anche misurabile.
- (c) Se f è misurabile e f = g quasi ovunque, allora g è anche misurabile.
 - (d) Ogni funzione integrabile è anche misurabile.
- (e) Se f è misurabile, g è integrabile e $|f| \le g$ quasi ovunque, allora f è anche integrabile.
- (f) Se f è il limite quasi ovunque di une successione di funzioni misurabili, allora f è anche misurabile.

Dimostrazione. La dimostrazione di (a), (b), (c) e (d) è elementare. La dimostrazione di (e) e (f) è basata sul teorema di Lebesgue.

Definizione. Un insieme A è misurabile se la sua funzione caratteristica χ_A è misurabile. Se A è misurabile, allora poniamo

(2.1)
$$\mu(A) := \begin{cases} \int \chi_A \ dx & \text{se } \chi_A \text{ è integrabile,} \\ \infty & \text{altrimenti.} \end{cases}$$

Osservazioni.

- Ogni intervallo A è misurabile e $\mu(A)$ è uguale alla sua lunghezza.
- Un insieme A è trascurabile se e solo se A è misurabile e di misura 0. (Corollario del teorema di Beppo Levi.)

Allo scopo di dare le proprietà di base di insiemi misurabili e della funzione m, introduciamo due nuove nozioni.

Definizione. Sia \mathcal{P} una famiglia di sottoinsiemi di \mathbb{R} , contenenti \emptyset . Una funzione $m: \mathcal{P} \to [0, \infty]$ è una misura se ha le seguenti proprietà:

- \bullet $m(\emptyset) = 0;$
- (positività) $m(A) \ge 0$ per ogni $A \in \mathcal{P}$;

• $(\sigma$ -additività) Se (A_k) è una successione di insiemi a coppie disgiunti in \mathcal{P} e $A := A_1 \cup A_2 \cup \cdots \in \mathcal{P}$, allora

$$m(A_1 \cup A_2 \cup \dots) = m(A_1) + m(A_2) + \dots$$

Esempio. La lunghezza degli intervalli limitati è una misura.

Definizione. Una famiglia \mathcal{M} di sottoinsiemi di \mathbb{R} è una σ -algebra se ha la seguente proprietà:

- $\emptyset \in \mathcal{M}$;
- Se $A \in \mathcal{M}$, allora $\mathbb{R} \setminus A \in \mathcal{M}$;
- Se (A_k) è una successione di insiemi di \mathcal{P} , allora

$$A_1 \cup A_2 \cup \cdots \in \mathcal{M}$$
 e $A_1 \cap A_2 \cap \cdots \in \mathcal{M}$.

Esempio. La famiglia di tutti i sottoinsiemi di \mathbb{R} è una σ -algebra.

Proposizione 2.15.

- (a) La famiglia degli insiemi misurabili è una σ -algebra.
- (b) La formula (2.1) definisce una misura.
- (c) Una funzione f è misurabile se e solo se tutti gli insiemi di livello

$$\{x \in \mathbb{R} : f(x) \le c\}, c \in \mathbb{R}$$

sono misurabili. La stessa equivalenza sussiste se sostituiamo la disuguaglianza $\leq con \geq$, < o > nella definizione degli insiemi di livello.

3. Integrale astratto di Lebesgue

La costruzione dell'integrale di Lebesgue, come data precedentemente, può essere generalizzato al seguente modo.

Definizione. Sia dato un insieme Ω e una famiglia $\mathcal P$ di sottoinsiemi di Ω . Assumiamo che

- $\emptyset \in \mathcal{P}$;
- se $A, B \in \mathcal{P}$, allora $A \cap B \in \mathcal{P}$;
- se $A, B \in \mathcal{P}$, allora esiste una successione finita di insiemi a due a due disgiunti $C_1, \ldots C_n$ in \mathcal{P} tali che

$$A \backslash B = C_1 \cup \cdots \cup C_n$$
.

Allora \mathcal{P} si dice semianello.

Esempi.

- Gli intervalli limitati formano un semianello.
- Ogni σ -algebra è anche un semianello.

Definizione. Si dice che (Ω, \mathcal{P}, m) è uno prespazio di misura se

• \mathcal{P} è un semianello in Ω ;

- $m: \mathcal{P} \to \mathbb{R}$ è una misura;
- $m(A) < \infty$ per ogni $A \in \mathcal{P}$;
- Ω è coperto da una successione di insiemi A_n in \mathcal{P} .

Esempio. Sia \mathcal{P} la famiglia degli intervalli limitati e denotiamo con m(A) la lunghezza dell'intervallo A. Allora $(\mathbb{R}, \mathcal{P}, m)$ è uno prespazio di misura.

Definizioni. Sia (Ω, \mathcal{P}, m) è uno prespazio di misura.

- Una funzione a gradino è una combinazione lineare finita di funzioni caratteristiche degli insiemi in \mathcal{P} .
- Un insieme $A \subset \Omega$ è trascurabile se per ogni $\varepsilon > 0$ esiste una successione (A_n) in T tale che

$$A \subset \bigcup_{n=1}^{\infty} A_n$$
 e $\sum_{n=1}^{\infty} m(A_n) < \varepsilon$.

Si può ripetere la costruzione del capitolo 2: tutti i risultati rimangono validi. In particolare, otteniamo una σ -algebra \mathcal{M} di insiemi misurabili in Ω , e m si estende ad una misura μ definita su \mathcal{M} . Otteniamo allora uno spazio di misura nel senso seguente:

Definizione. Si dice che $(\Omega, \mathcal{M}, \mu)$ è uno *spazio di misura* se \mathcal{M} è una σ -algebra in Ω e m è una (non necessariamente finita) misura definita su \mathcal{M} .

Consideriamo alcuni casi particolari.

3.1. Integrale su un sottoinsieme. Dato un intervallo (a,b) e una funzione $f:(a,b)\to\mathbb{R}$, è naturale definire il suo integrale tramite la formula

$$\int_a^b f \ dx := \int g \ dx$$

dove $g: \mathbb{R} \to \mathbb{R}$ è l'estensione di f tramite la funzione nulla:

$$g(x) := \begin{cases} f(x) & \text{se } a \in (a, b), \\ 0 & \text{altrimenti.} \end{cases}$$

Ciò può essere generalizzato come segue. Sia (Ω, \mathcal{P}, m) un prespazio di misura e $(\Omega, \mathcal{M}, \mu)$ il corrispondente spazio di misura. Dato un insieme misurabile $M \in \mathcal{M}$, la restrizione di μ a

$$\mathcal{P}_{\mathcal{M}} := \{ M \cap A : A \in \mathcal{P} \}$$

definisce un semispazio di misura $(M, \mathcal{P}_{\mathcal{M}}, \mu|_{\mathcal{P}_{\mathcal{M}}})$.

3.2. Misure prodotto. Sia $(\Omega_1, \mathcal{P}_1, m_1)$ e $(\Omega_2, \mathcal{P}_2, m_2)$ due prespazi di misura. Poniamo

- $\bullet \quad \Omega = \Omega_1 \times \Omega_2,$
- $\mathcal{P} = \{A_1 \times A_2 : A_1 \in \mathcal{P}_1 \text{ e } A_2 \in \mathcal{P}_2\},$
- $m(A) = m_1(A_1) \cdot m_2(A_2)$.

Allora (Ω, \mathcal{P}, m) è uno prespazio di misura, cossicchè possiamo costruire l'integrale di Lebesgue astratto in Ω . Il seguente teorema generale ci permette di calcolare integrali doppi tramite integrazioni successive:

Teorema 3.1. (Fubini) Sia $f: \Omega \to \mathbb{R}$ integrabile. Allora la funzione definita da

$$f_{x_1}: \Omega_2 \to \mathbb{R}, \quad f_{x_1}(x_2) := f(x_1, x_2)$$

è integrabile per quasi ogni $x_1 \in \Omega_1$. In più, la funzione

$$x_1 \mapsto \int_{\Omega_2} f_{x_1} dx_2$$

è integrabile, e

$$\int_{\Omega_1} \left(\int_{\Omega_2} f_{x_1} \ dx_2 \right) \ dx_1 = \int_{\Omega} f \ dx.$$

Per verificare l'integrabilità di f si può spesso utilizzare il

Teorema 3.2. (Tonelli) Sia $f: \Omega \to \mathbb{R}$ una funzione misurabile. Assumiamo che il sequente integrale

$$\int_{\Omega_1} \left(\int_{\Omega_2} |f| \ dx_2 \right) \ dx_1$$

sia ben definito e finito. Allora f è integrabile.

3.3. Integrale di Lebesgue-Stieltjes. Sia $g:[a,b] \to \mathbb{R}$ una data funzione di variazione limitata su un intervallo chiuso [a,b]. Sia $\Omega=(a,b]$, denotiamo con \mathcal{P} la famiglia di tutti gli intervalli chiusi a destra (c,d] con $a \le c \le d \le b$, e definiamo

$$m(A) = g(d) - g(c)$$

per ogni $A = (c, d] \in \mathcal{P}$. Allora (Ω, \mathcal{P}, m) è un prespazio di misura. Denotiamo con μ_q la misura corrispondente.

La fondamentale importanza dell'integrale di Stieltjes è dato dalla forma originale del teorema di rappresentazione di Riesz sulla caratterizzazione dello spazio duale dello spazio di Banach C(K) dove K è uno spazio compatto di Hausdorff :

Teorema 3.3. (Riesz) Sia I = [a, b] un intervallo chiuso limitato. L'integrale di Lebesgue-Stieltjes

$$\int_a^b f \ d\mu_g$$

definisce una forma lineare e limitata f su C(I) per ogni data funzione $g \in BV(I)$, e viceversa, ogni forma lineare e limitata può essere scritta in questo modo.

Osservazione. Notiamo che questo teorema può essere formulato e dimostrato senza utilizzare l'integrale di Lebesgue. Si consiglia di guardare a tal riguardo l'ultima sezione.

4. Formula di Newton-Leibniz

In questa sezione consideriamo un intervallo chiuso [a,b], non necessariamente limitato. L'importante nozione seguente ci consente di estendere la formula di Newton-Leibniz per tutte le funzioni integrabili secondo Lebesgue.

Definizione. Una funzione $F:[a,b]\to\mathbb{R}$ è assolutamente continua se per ogni $\varepsilon>0$ esiste $\delta>0$ tale che, per ogni successione finita o numerabile di intervalli a coppie disgiunti (a_k,b_k) di totale lunghezza $<\delta$ in [a,b], noi abbiamo

$$\sum |F(b_k) - F(a_k)| < \varepsilon.$$

Osservazioni.

- Ogni funzione Lipschitziana è assolutamente continua, e ogni funzione assolutamente continua è uniformemente continua.
- Ogni funzione assolutamente continua è anche a variazione limitata su ogni sottointervallo limitato di [a, b], dunque è derivabile quasi ovunque.

Definizione. Una primitiva di una funzione $f:[a,b]\to\mathbb{R}$ è una funzione $F:[a,b]\to\mathbb{R}$

- assolutamente continua,
- a variazione limitata,
- soddisfacente F' = f quasi ovunque.

Teorema 4.1. (Lebesgue)

(a) Una funzione $f:[a,b] \to \mathbb{R}$ ha una primitiva se e solo se f è integrabile.

(b) Se F è una primitiva di f, allora la formula di Newton-Leibniz rimane valida:

$$\int_{a}^{b} f \ dx = F(b) - F(a).$$

Osservazioni.

- Ricordiamo dal teorema 1.3 che ogni funzione $F:[a,b] \to \mathbb{R}$ a variazione limitata è derivabile quasi ovunque. Infatti, F' è sempre integrabile. È allora naturale chiedere se la formula di Newton–Leibniz sussiste per tutte le funzioni a variazione limitata.
- ullet La funzione di salto $f=\operatorname{sgn}$ mostra che la formula di Newton-Leibniz

$$\int_a^b f'(x) \ dx = f(b) - f(a)$$

non sussiste per tutte le funzioni a variazione limitata, nonostante il fatto che entrambi le parti nella formula sono ben definite. Comunque questo esempio non è molto interessante perchè f non è continua.

- E più interessante notare che la formula di Newton-Leibniz non sussiste per tutte le funzioni continue, a variazione limitata. Per esempio, Lebesgue ha costruito una funzione $F:[0,1] \to \mathbb{R}$ crescente, continua, a variazione limitata tale che, F(0)=0, F(1)=1, ma F'=0 quasi ovunque. Queste funzioni sono dette singolari. Lebesgue ha anche dimostrato che ogni funzione crescente e continua $F:[a,b] \to \mathbb{R}$ ammette una decomposizione F=A+S dove A è assolutamente continua, S è singolare e entrambi sono crescenti. Questa decomposizione è unica a meno di una costante additiva.
- In più, esistono funzioni continue e strettamente crescenti $F: [a,b] \to \mathbb{R}$ le cui derivate sono nulle quasi ovunque. Un tale esempio è dato da [6], V.2.2. Ricordiamo la costruzione. Sia I = [0,1]. Noi vogliamo definire una successione di funzioni crescenti $F_n: I \to \mathbb{R}$ come segue. Prima noi poniamo $F_0(x) = x$. Fissiamo un numero 0 < t < 1. Se F_n è già definita, allora poniamo

$$F_{n+1}(x) = F_n(x)$$
 per $x = k2^{-n}, k = 0, 1, \dots, 2^n$.

In più, se $\alpha = k2^{-n}$ e $\beta = (k+1)2^{-n}$, allora per $x = (\alpha + \beta)/2$ poniamo

$$F_{n+1}(x) = \frac{1-t}{2}F_n(\alpha) + \frac{1+t}{2}F_n(\beta).$$

Infine, definiamo F_{n+1} linearmente tra i due punti consecutivi $k2^{-n-1}$ e $(k+1)2^{-n-1}$.

Si può verificare che F_n converge ad una funzione continua e strettamente crescente $F: [0,1] \to \mathbb{R}$ soddisfacente F(0) = 0, F(1) = 1 e F'(0) = 0 quasi ovunque.

I seguenti due risultati sono conseguenze semplici di queste formule.

Proposizione 4.2. (Integrazione per parti) Siano $F, G : [a, b] \to \mathbb{R}$ due funzioni assolutamente continue e poniamo f = F', g = G'. Allora

$$\int_a^b Fg \ dx + \int_a^b fG \ dx = [FG]_a^b.$$

Proposizione 4.3. (Cambio di variabile, de la Vallée Poussin) Sia $f:[a,b] \to \mathbb{R}$ una funzione integrabile, e sia $x:[c,d] \to \mathbb{R}$ una funzione assolutamente continua, crescente, tale che

$$x(c) = a \quad e \quad x(d) = b.$$

Allora la funzione $(f \circ x)x'$ è integrabile sull'intervallo [c,d] e

$$\int_{c}^{d} f(x(t))x'(t) dt = \int_{a}^{b} f(x) dx.$$

Diamo un'importante generalizzazione dell'ultima proposizione:

Teorema 4.4. (Radon-Nikodým) Sia $(\Omega, \mathcal{M}, \mu)$ a spazio di misura con $\mu(A) < \infty$, e sia ν una misura su \mathcal{M} soddisfacente la proprietà sequente:

se $A \in \mathcal{M}$ e $\mu(A) = 0$, allora $\nu(A) = 0$ (si dice che ν è assolutamente continua rispetto a μ).

Allora esiste una funzione integrabile nonnegativa g tale che se f è integrabile rispetto a ν , allora fg è integrabile rispetto a μ , e

$$\int f \ d\nu = \int f g \ d\mu.$$

Osservazione. La funzione g è detta la derivata di $Radon-Nikod\acute{y}m$ di ν rispetto a μ , ed è spesso denotata da $d\nu/d\mu$.

5. Integrale di Stieltjes

Ricordiamo un'utile nozione di integrale introdotta da Stieltjes prima di Lebesgue.

Date due funzioni $f, g: I \to \mathbb{R}$, consideriamo tutte le somme

$$\sum_{k=1}^{n} f(y_k)(g(x_k) - g(x_{k-1}))$$

dove

$$a = x_0 < y_1 < x_1 < y_2 < x_2 < \dots < y_n < x_n = b.$$

se queste somme tendono ad un limite finito per

$$\max (x_k - x_{k-1}) \to 0,$$

allora questo limite è chiamato l'integrale di Stieltjes di f rispetto a q, ed è denotato da

$$\int_{a}^{b} f \ dg = \int_{a}^{b} f(x) \ dg(x).$$

Se $g \in BV(I)$, allora questo integrale esiste per ogni funzione continua $f: I \to \mathbb{R}$. Per g(x) = x l'integrale di Stieltjes si riduce all'integrale di Riemann. C'è una interessante variante della formula di integrazione per parti dell'integrale di Stieltjes :

Proposizione 5.1. Sia $f, g: I \to \mathbb{R}$. Se esiste l'integrale

$$\int_{a}^{b} f \ dg,$$

allora esiste l'integrale

$$\int_a^b g \ df$$
,

e

$$\int_{a}^{b} f \, dg + \int_{a}^{b} g \, df = f(b)g(b) - f(a)g(a).$$

RIFERIMENTI

- [1] H. Lebesgue, Sur une généralisation de l'intégrale définie, C. R. Acad. Sci. Paris 132 (1901), 1025-1027; [3] I, 197-199.
- [2] H. Lebesgue, Leçons sur l'intégration et la recherche des fonctions primitives, Paris, 1904; [3] II, 11-154.
- [3] H. Lebesgue, Oeuvres scientifiques I-V, Université de Genève, 1972-73.
- [4] F. Riesz and B. Sz.-Nagy, *Leçons d'analyse fonctionnelle*, Akadémiai Kiadó, Budapest, 1952.
- [5] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York, 1990.
- [6] B. Sz.-Nagy, Introduction to Real Functions and Orthogonal Expansions, Oxford University Press, New York, 1965.