
PENALTY AND BARRIER FUNCTIONS

1. Penalty Method

Problem: min f under the constraint g(x) ≤ 0.
Consider the constraint g(x) ≤ 0. The idea of penalty is to have

P (x) =

{
0 g(x) ≤ 0

> 0 g(x) > 0

This can be achieved using the operation

max(0, g(x))

which returns the maximum of the two values. We can make the penalty
more regular by using

(max{g(x1, x2, . . . , xN ), 0})2.

This is the quadratic penalty function.
In general

(max{g(x1, x2, . . . , xN ), 0})p p ≥ 1

• p = 1 linear penalty function: this function may not be differen-
tiable at points where g(x) = 0.

• p = 2. This is the most common penalty function.

Given a function g+(x1, . . . , xN ) = max{g(x1, x2, . . . , xN ), 0} with g ∈ C1

then ϕ(x) = (max{g(x), 0})2 is C1 and

Dϕ(x) =

{
2g(x)Dg(x) if g(x) > 0

0 if g(x) ≤ 0

Hence

Dϕ(x) = 2g+(x)Dg(x).

Penalty method
Penalty method replaces a constrained optimization problem by an un-

constrained problems whose solutions ideally converge to the solution of the
original constrained problem. First we have converted the constraints into
penalty functions, then we add all the penalty functions on to the original
objective function and minimize from there: minimize

Fk(x) = f(x) +
k

2
(max{g(x), 0})2

We multiply the quadratic penalty function by k
2 . The factor k > 0 controls

how severe the penalty is for violating the constraint.
1
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Solve the minimum problem under the constraint g ≤ 0

min f(x1, x2) = ∥x∥2 x = (x1, x2) ∈ R2

g(x) = x1 + x2 − 2 ≤ 0

We consider

(1.1) g+(x1, x2) =

{
x1 + x2 − 2 x1 + x2 − 2 > 0

0 x1 + x2 ≤ 2

Introduce an artificial penalty for violating the constraint: we are trying
to minimize f hence we add value when the constraint is violated.

Fk(x) = f(x) +
k

2
(g+(x))2 , k = 1, 2, . . .

Fk(x) = x21 + x22 +
k

2

(
max((x1 + x2 − 2), 0)

)2
k = 1, 2, . . .

Making the gradient{
∂Fk
∂x1

= 2x1 + k
(
max((x1 + x2 − 2), 0)

)
= 0

∂Fk
∂x2

= 2x2 + k
(
max((x1 + x2 − 2), 0)

)
= 0

x2 = x1

x1 = −kmax(x1 − 1, 0) =

{
−k(x1 − 1) x1 − 1 > 0

0 x1 − 1 ≤ 0

x2 = −kmax(x2 − 1, 0) k = 1, 2, . . .

• Assume x1 − 1 > 0, x2 − 1 > 0 then (1 + k)x1 = k x1 = x2 = k
1+k

(not admissible since we assume x1 − 1 > 0, x2 − 1 > 0 )
• Assume x1 − 1 ≤ 0, x2 − 1 ≤ 0 then x1 = x2 = 0

The solution is

x1 = x2 = 0

Solve the minimum problem under the constraint g ≤ 0

min f(x1, x2) = (x1 − 1)2 + (x2 − 1)2

g(x) = x1 + x2 − 2 ≤ 0

Fk(x) = f(x) +
k

2
(g+(x))2

Fk(x) = (x1 − 1)2 + (x2 − 1)2 +
k

2

(
max((x1 + x2 − 2), 0)

)2
k = 1, 2, . . .

{
∂Fk
∂x1

= 2(x1 − 1) + k
(
max((x1 + x2 − 2), 0)

)
= 0

∂Fk
∂x2

= 2(x2 − 1) + k
(
max((x1 + x2 − 2), 0)

)
= 0
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x2 = x1

x1 − 1 = −kmax(x1 − 1, 0) =

{
−k(x1 − 1) x1 − 1 > 0

0 x1 − 1 ≤ 0

x2 − 1 = −kmax(x2 − 1, 0) k = 1, 2, . . .

• Assume x1 − 1 > 0, x2 − 1 > 0 then x1 = x2 = 1 (not possible since
we assume x1 − 1 > 0, x2 − 1 > 0)

• Assume x1 − 1 ≤ 0, x2 − 1 ≤ 0 then x1 = x2 = 1.

The solution is
x1 = x2 = 1

.
Solve the minimum problem under the constraint g ≤ 0

min f(x1, x2) = (x1 − 1)2 + (x2 − 2)2

g(x) = x1 + x2 − 2 ≤ 0

Fk(x) = f(x) +
k

2
(g+(x))2

Fk(x) = (x1 − 1)2 + (x2 − 2)2 +
k

2

(
max((x1 + x2 − 2), 0)

)2
{

∂Fk
∂x1

= 2(x1 − 1) + k
(
max((x1 + x2 − 2), 0)

)
= 0

∂Fk
∂x2

= 2(x2 − 2) + k
(
max((x1 + x2 − 2), 0)

)
= 0

x2 − 2 = x1 − 1

x1 − 1 = −k

2
max(2x1 − 1, 0)

x2 − 2 = −k

2
max(2x2 − 3, 0)

x1 − 1 + k
2 (2x1 − 1) = 0 (1 + k)x1 = 1 + k

2

x1 =
1 + k

2

1 + k
x2 =

3k
2 + 2

k + 1

k → +∞

x1 =
1

2
x2 =

3

2
More generally, f : RN → R penalty method for minK f with K : gi(x) ≤

0, i = 1, . . .M is
Set

P (x) =
∑

i=1,...,M

max{0, gi(x)}2

and minimize
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min[f(x) +
k

2
P (x) x ∈ Rn k ∈ N]

Go back to Lagrange multiplier method. The problem is the following
Given f : RN → R, h : RN → RP , find

(1.2) min{f(x) : x ∈ RN s.t.hi(x) = 0, i = 1, . . . , P}
Karush-Kuhn-Tucker conditions

min f(x1, x2) = (x1 − 1)2 + (x2 − 2)2

g(x) = x1 + x2 − 2 ≤ 0

• Lagrangian

L(x1, x2, λ) = (x1 − 1)2 + (x2 − 2)2 + λ(x1 + x2 − 2)

• Stationary condition

∂L
∂x1

=
∂

∂x1
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x1
(x1 + x2 − 2) = 0

∂L
∂x2

=
∂

∂x2
((x1 − 1)2 + (x2 − 2)2) + λ

∂

∂x2
(x1 + x2 − 2) = 0

• Admissibility (feasible) condition

x1 + x2 − 2 ≤ 0

• Multiplier sign: non negativity of the multiplier

λ ≥ 0

• Complementary slackness condition

λ(x1 + x2 − 2) = 0.

Find the solution. By the complementary slackness condition

λ(x1 + x2 − 2) = 0,

we have that λ = 0 or x1 + x2 − 2 = 0.
If λ = 0 then L(x1, x2, 0) = (x1 − 1)2 + (x2 − 2)2, and

DL(x1, x2, 0) = (2(x1 − 1), 2(x2 − 2)),

whose stationary point is (1, 2). This is not an admissible point.
Let x1 + x2 − 2 = 0 then x2 = 2− x1,

Dx1L = 2(x1 − 1) + λ = 0

Dx2L = 2(x2 − 2) + λ = 0,

then x2 = 2− x1 and x1 − 1 = x2 − 2

x1 =
1

2
, x2 =

3

2
λ = 1
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2. Barrier functions

In a constrained optimization a barrier function is a continuous function
whose value on a point increases to infinity as the point approaches the
boundary of the feasible region of an optimization problem. They are used to
replace inequality constraints by a penalizing term in the objective function
that is easier to handle.

Assumption: The set of strictly feasible points, {x : gi(x) < 0, i = 1, ...m}
is nonempty.

ϕ(x) =
M∑
i=1

log(−gi(x))

∇ϕ(x) =

M∑
i=1

1

gi(x)
∇(gi(x))

We consider

min f(x) +
M∑
i=1

Igi(x)≤0(x)

Igi(x) =

{
+∞ gi(x) > 0

0 gi(x) ≤ 0

and the approximation by adding the log barrier function

Fθ(x) = f(x)− 1

θ

M∑
i=1

log(−gi(x))

with θ a positive large number.
The idea in a barrier method is to avoid that points approach the bound-

ary of the feasible region.
Next, we consider the minimization problem

min[f(x)− 1

θ

M∑
i=1

log(−gi(x))],

gi(x) < 0, i = 1, . . .M

whose stationary condition is

θ∇f(x)−
M∑
i=1

1

gi(x)
∇(gi(x)) = 0,

with condition
gi(x) < 0, i = 1, . . .M

c ∈ R different from 0. We consider the minimization problem

min
K

(cx+ cy),
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x+ y ≤ 1, x ≥ 0, y ≥ 0.
We have M = 3

g1(x, y) = x+ y − 1 ≤ 0

g2(x, y) = −x ≤ 0

g3(x, y) = −y ≤ 0

The domain K is described by the constraints x+ y ≤ 1, x ≥ 0, y ≥ 0.

This is the feasible set.

f(x, y) = cx+ cy

We have f(0, 0) = 0 f(0, 1) = c f(1, 0) = c f(x, y) = c if x+ y = 1.
If c > 0 f(0, 0) = 0.
If c < 0 f(x, y) = c with x+ y = 1.

c ∈ Rn.

min[cTx− 1

θ

M∑
i=1

log(−gi(x))],

with gi linear functions.
Fix c ∈ R. We consider the minimization problem

min
K

(cx+ cy),

and its approximation, θ > 0

min[(cx+ cy)− 1

θ
(log(−x− y + 1) + log(x) + log(y)),

x+ y < 1, x > 0, y > 0.

Fθ(x, y) = (cx+ cy)− 1

θ
(log(−x− y + 1) + log(x) + log(y))

Discuss the approximate problem.

Fθ(x, y) = (cx+ cy)− 1

θ
(log(−x− y + 1) + log(x) + log(y))

Making the gradient

θc− 1

x+ y − 1
− 1

x
= 0

θc− 1

x+ y − 1
− 1

y
= 0.

θcx(x+ y − 1)− x− x− y + 1 = 0

θcy(x+ y − 1)− y − x− y + 1 = 0

Hence
θcx2 − (θc(1− y) + 2)x+ 1− y = 0,
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θcy2 − (θc(1− x) + 2)y + 1− x = 0.

Fix
θc = t .

Recall that θ is a positive large number

x2 − ((1− y) +
2

t
)x+

1− y

t
= 0,

y2 − ((1− x) +
2

t
)y +

1− x

t
= 0.

First we consider

x2 − ((1− y) +
2

t
)x+

1− y

t
= 0,

∆ = ((1− y) +
2

t
)2 − 4

1− y

t
= (1− y)2 +

4

t2

√
∆ =

√
(1− y)2 +

4

t2
= |1− y|

√
1 +

4

t2(1− y)2

For x small √
1 + x ≈ 1 +

1

2
x√

1 +
4

t2(1− y)2
≈ 1 +

2

t2(1− y)2

x1,2 ≈
1

2
[(1− y) +

2

t
± (1− y)]

x1,2 ≈

{
(1− y) + 1

t
1
t

Finally we get {
x+ y ≈ 1 + 1

θc c < 0 θ large.

x = y ≈ 1
θc c > 0 θ large.


