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f(x) = xx
Study this function
» Compute f/(x)
> x = e maximum global point
> can we get
e" >mn° 7
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f(x) = xx
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>
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Ivan Niven The Two-Year College Mathematics Journal, Vol. 3,
No. 2. (Autumn, 1972), pp. 13-15.



Inequalities Given N positive real numbers x1, x, - - - xy, we define
their arithmetic mean as

X1+ x2+ -+ Xn le'vzlxi
Ma = N TN

and their geometric mean as




Theorem (Mean Inequality)

Given N real positive numbers xi, xo,- -+ Xy

Recall




The simplest for two non-negative numbers x and y, is the
statement that

X;yz\/xy

with equality if and only if x = y. This case can be seen from the
fact that the square of a real number is always non-negative

0<(x—y)
=x% = 2xy + y?
=x% 4 2xy + y? — 4xy
= (x+y)? —4xy.



By induction n =1, true at step n.
We consider the last number x,11 as a variable and define the
function

"+ Xp+ t
t J—
fe) = n+1
Proving the induction step is equivalent to showing that f(t) > 0
for all t > 0, with f(t) =0 only if x, ..., x, and t are all equal.
The first derivative of f is given by

(Xl---x,,t)ﬁ, t>0.

1 1 1 n
atlt atl t>0
P L)

f'(t) =

A critical point tg has to satisfy f/(ty) =0



1 =
(Xl . Xn)n+1 to nmtl — 1.
After a small rearrangement we get

L 1
tg™h = (xu e xp) ™,

and finally

1

to = (X1 xa)",

which is the geometric mean of xi, ..., x,. This is the only critical
point of f. Since f”/(t) > 0 for all t > 0, the function has a strict
global minimum at tp.



1/n

X1+"'+X,r;—‘::§xl"'xn)/ —(x1+xp ﬁ(xl. .xn)ﬁ

X X, 1 1 1
_ 1+n+1+ n—|-n_’_l(Xl"'Xn);_(Xl"'X”)F
:X1+"'+Xn_ n (Xl---x)%

n+1 n+1 n

__n <X1+"'+Xn—(x1--~x)%)

n+1 n "
>0,

where the final inequality holds due to the induction hypothesis.
The hypothesis also says that we can have equality only when
X1, ..., Xp are all equal. In this case, their geometric mean has the
same value. Hence, unless xi, ..., Xn, Xn1-1 are all equal, we have
f(xnt+1) > 0. This completes the proof.



Short Introduction on Topology. Let us start our discussion
recalling the properties of the modulus. V x,y € R the following
properties hold true

> x| >0
» x # 0 if and only if |x| > 0
> x| = |~ x]

> |xy| = Ix]lyl

> x4yl < x| +lyl

> [lx| = Iyl < [x =yl



Norms R™ and p > 1. The formula
Xl = (al? -+ )7

defines a norm in R™.
We need to show the following properties Vx, y,z € R™ and
AER:

> |||, >0,
> [Ix][,=0 <= x=0
> A, = 1AL i,

>

X +yll, < lIxllp + llyll,-



The inequality
[Ix +yll, < lixll, +llyll,

will be shown later, thanks to Minkowski inequality.



Scalar Product The scalar product in R™ is real number given by
X-y=x1y1+ -+ XmVYm for all x,y € R"™

We need to verify that the following properties hold
forall x,y,z e R"A e R

> xy=y-x
> (x+y) z=x-z+y-z,
> A(x-y)=Xx-y.

We have

(x,x) = IIx]



The triangular inequality.
A particular case p = 1.

Example
» The formula
Ixlly = [xa| + -+ |xml|, x=(x1,...,xm) €R™
defines a norm on R™.
Indeed
[x +ylly =[xt + yal+ - +xm + ym| < xal+yal| -+ xm|+ym]

=[xl +llylly



A particular case p = oo.
Example
» The formula
1]

o = Mmax{|xt|,...,|Xm|}

defines a norm on R™.

X+ ¥lloo = max{xi +y1], s [xm + ym|} <
max{[xi|} + max{|yi[} = [Ix[loc + [[¥ ]l



Exercise. Given the function

2 2, 2.2
f(x1,x) = axi —x3 +x1%3,

with a > 0 real number.

(i) Find the partial derivatives of the function f
(i) Find the points where the gradient of f is 0.
(i) Find the Hessian matrix of the function f



fr, = 2ax1 + 2x1x22, fo, = —2x2 + 2x12x2)

2ax] + 2><1x22 =0 = x1 =0,

a>0and x3 = —a no solution in R.

—2xo + 2X12X2 =0 = x=0
(0,0)
The Hessian matrix is

sz()q %) = [23 + 2x22 4x1x ]

4x1x0 -2+ 2x12
Point: (0,0).

D?f(0,0) = [2‘3 0 ]

0 -2
det —4a < 0, (0,0) is a saddle point.



Exercise Given the function

f(Xl,Xz) = 2e_X12 + 5e_X22

(i) Find the partial derivatives of the function f
(i) Find the points where the gradient of f is 0.
(i) Find the Hessian matrix of the function f



fo, = —4x1e*X12 fr, = —10xzefx22)
8x2e X — 4e% 0
D*f =t
ba, %) [ 0 20X22e*’<22 —10e™%

—4 0
D*f(x1,%2)|(0.0) = [0 10]

Point (0,0). (0,0) is a local maximum point, since
det(D2f(X1,X2)’(0’o)) >0 and fX1,X1(070) <0
£(0,0) =7.



Young inequality Given p > 1, p € R we define the conjugate of p
the real number g such that

11
S4S =1
P q

Theorem
Young inequality: given two real positive numbers a e b, and given
two numbers real and conjugate p, q, we have

aP b9

ab< —+ —
P q



Let b > 0 and fixed and we define

f:[0,+00) - R f(t)






Since

P q q
lim terqtb2+00 f(O):bq>0

if we are to show that there exists a unique point £ > 0 such that
f'(£) = 0 and f(£) = 0 then £ will be the absolute minimum point



1 b
f(bfil)sz : +bq—bp11b:<llg+;—1>bq:0
p

Then for any a > 0

this means



Inequalities Given N positive real numbers x1, x, - - - xy, we define
their arithmetic mean as

X1+ x2+ -+ Xn le'vzlxi
Ma = N TN

and their geometric mean as




Theorem (Mean Inequality)

Given N real positive numbers xy, x2,- -+ XN

Recall



> p,geQ
Then p = = with m,n € N with m < n and

q:

Then by taking

Xm+l =" =Xp =Y



and we get the inequality.

n n

Recallp= " q= 7.



Convex Functions

Definition
Q c RN is a convex set if for any x and y € Q,

A+ (1—=XNyeQ  forany A €[0,1].
Definition
Let C be an open convex set. f : C — R is convex if

fx+ (1 =Ny) <AMx)+1-Nf(y) Vx,yeC, Xel0,1].



An alternative proof can be done by using the convexity of the
function x — €*. Indeed

xy = elnxy — elnx+|ny —

1 py 1l q 1 1
eplnx +q|ny <,e|"Xp_|_

p
xP x4
+

In x9
7e —

p q



Theorem ( Holder Inequality)

Let p, q such that p,q € [1,+00) and conjugate, then Vx,y € R™
we have

-yl < Ixllpllyllg:



. .
bkl
Il Il

Follow, by Young inequality

1xP 1 |y9
a,-b,-g—’X‘,, Jy!q
plixlle  qllylg

Taking the sum over the index i

Sy ISP IS bl
peri 1115 g vlg



Then we get

Zab _Z Ixi|  |yil

IxX1lp llyllq

and Holder inequality follows

-yl < Ixllpllyllg-

<1



Exercise.
Find the minimum and the maximum of f(x,y) = 1+ x? — y2 in
K, where K is the trapezoid region of the plane delimited by the
points (1,2),(-1,2),(1/4,1/2),(—1/4,1/2), with the boundary
included.

» The function is C1(IR?), hence the function is continuous on
K. Since K is closed and bounded and f is continuous on K,
by the Weierstrass Theorem, the minimum and maximum
exist.

» The function is C: we may split the problem on the interior
of K computing the gradient of f and on the boundary, here
we need to find the equation of the lines making the boundary.



On the interior of K: f(x,y) = 2x fy(x,y) = -2y
Vf(x,y) =0 <= x =0,y =0. The point (0,0) does not
belong to interior trapezoid region then (0,0) will be not
considered.

Next, we study the function on the boundary

Compute the function at the points
(1) 2)7 (_17 2)7 (1/47 1/2)7 (_1/47 1/2)
f(1,2) =f(-1,2) = -2

F(1/4.1/2) = F(-1/a1/2) =1~ & = 22



» Compute the function on the boundary lines

1
f(x,1/2):x2—1—|—1:x2+§ —1/4<x<1/4

f(x,2x) = —3x%> + 1 1/4<x<1
f(x,2) = x> -3 ~1<x<1
f(x,—2x) = —3x> +1 ~1<x<-1/4

and putting equal to 0 the derivatives we find the points
(0,1/2) and (0,2)

£(0,1/2) =3/4  £(0,2) = —3



As a consequence, we need to compare
f(0,1/2)=3/4 £(0,2)=-3 f(1,2)=f(-1,2)=-2

F(1/4,1/2) = f(—1/4,1/2) = 1%

Hence
Xm=1(0,2) m=-3 xm = (1/4,1/2)

13
= (-1/4,1/2) M= T2



Here we use the parametric equation of the curve.
Maxime f(x, y) = 4xy under the constraints

2 2

X—+£—2:1 a>0,b>0
x >0, y >0

Observe that if x =0 or y = 0 then f(x,y) = 0. Since we are
considering a maximization problem we consider positive x and y.



The parametric equation in (0,7/2).

F(t) = 4abcos(t)sin(t) = 2absin(2t) t € [0,7/2]

F'(t)=0 < cos(2t) =0 2t:g+kﬂ tozg

xo = x(to) = av2/2  yo = y(to) = bV2/2



Theorem (Minkowski inequality)
Let p € [1,+00) and ¥ x,y € R™ then

X+ yllp < lxllo + llyllp-



We have
Ixi + yilP = |xi + yilP 7YX + yi| <

i + yilP = (il + [yi)
Taking the sum

m m m
Yo lxiHylP <D i+ vl bl 4+ Y Ixi+ vl P il
i=1 i=1 i=1



we obtain

1

m m S
q
> i+ yilP il < HXHP( > Ixi +y,'|(”1)">

i=1 i=1

1

m m =
q
D i+ yilP Myl < iyl < > Ixi+ yfl(”‘l)">
i—1 i=1



Then since (p—1)g=p
Ix + 15 < 1Ix+ ¥ 157 xlle + 11y llp)

then making the quotient with ||x + y|[5~" (that we assume not 0)
we obtain the Minkowski inequality

X+ yllp < lIxllo + llyllp-



Example

R™(R) with the euclidean norm. Given x = (x1,...,xm) € R™
then P
Il = (4 - 2) 2.



Properties. It is possible to show

Jlimxlp = ¢l

Proof.
Indeed by the comparison with norms for any p >1
1
IXlloo < lIxllp < m# Ix[|o »

and the result follows passing to the limit p — +o0.
Recall

HXHoo = ‘Xio’7

for some iy.

m
X115, = Ixip|P < D 1xilP < mixi [P = m x5
i=1



Two norms || x|, ||x]|, are equivalent if there exist two constant m
and M such that

mlx|[p < lxlla < MIx[],-

The norms p for p > 1 are equivalent (the proof is not given here).



Exercises. Consider
x|l < 1.

This is the ball with respect to the euclidean norm: we draw the
ball in the plane (n = 2).

Ixll, <1

Now we consider the the ball with respect to ||x||: in the plane

this is the square.
Xl <1



Now we consider the the ball with respect to ||x||;: we draw in the
plane ||x|[; < 1.

X[ <1

«O>» «Fr «=»

« =)

DA



n

di(x,y) = Ix—yllh = > Ixi = il,

i=1

X = (X17X27"'axn) and y= (}’17}/2,---a}/n)




||x]|;:this is the taxicab norm or Manhattan norm. The name
relates to the distance a taxi has to drive in a rectangular street
grid to get from the origin to the point x. The distance derived
from this norm is called the Manhattan distance.

n
di(xy) = Ix =yl = 3 Ixi — i,
i=1

A taxicab (Manhattan distance or Manhattan length) geometry is
a form of geometry in which the metric of Euclidean geometry is
replaced by a new metric in which the distance between two points
is the sum of the absolute differences of their Cartesian
coordinates. The name alludes to the grid layout of most streets
on the island of Manhattan, which causes the shortest path a car
could take.



Vectorial Spaces

A vectorial space over a field K is a set V with two applications,
sum and product with a scalar number A, characterized by the
following properties

» the sum of two vectors u, v gives a new vector denoted by
u—+v,
(u,v) > u+v

» the product of the vector u with a scalar number A € K gives
a new vector denoted by Au

(u,\) = Au



The following properties are requested

» (V,+) is an abelian group:
AMu+v)=Adu+Av VAe KYu,veV
A+ A)v=Av+ v VA N eKVveV
(A)v =A(\v) VA M e KVveV

>
>
>
> lv=vVvevV



Example
V=R"K=R.

x+y=x+y,x2+y2,. ... s Xm+ Ym)

Ax = (Ax1, Ax2, . ..y AXm)

Let V a vectorial space, a subset W of V is a vectorial subspace if
is a vectorial space with respect to the same applications:

YAMeK, VuuveW = du+X \veW

Notation V(K), V over K



Normed Spaces

A vectorial space X(R) endowed with norm is a vectorial normed
space
Vx,y,z € X e A € R, the properties hold

> x|l =0,

> |x||=0 <= x=0,

> [l = AL I,

> lx+yll < lixll+ vl



Metric Spaces.

Consider at first R™: this is a normed space with the ||x]|, .

Definition
We define the distance between two points of R tas

d(x,y) =[x =yl

> d(x,y)>0

> d(x,y) =0 <= x=y
> d(x,y) =d(y,x)

> d(x,y) <d(x,z)+d(z,y)



The canonical base in R™ is given by the vectors
el =(1,0,...,0), 2 =(0,1,...,0), e" =(0,0,...,1).
e/ =(0,...1,0...0)
ek =1(0,...0,1...0).
We may compute the distance
dle,ef)=v2 j+#k

R™ with ||x|, may be endowed of a metric, then (R™, d) is a
metric space.



(X, d)

Generally, X is a set and d the metric



Every normed space is also a metric space, with the distance

d(x,y) =[x -yl

The metric defined by the norm has two properties

» Invariance by translation
dx+w,y +w)=d(x,y)

» Scaling
d(Ax, Ay) = [Ald(x,y)



These properties are not always satisfied in a metric space: indeed
there exist metric spaces where d can not by obtained by a norm

Example
The set R with metric given by

1
d(x,y) = ;\ arctan x — arctan y|

The distance function is positive with values in [0, 1)

1 1 1,7 =
0 < =|arctan x—arctany| < =(|arctan x|+|arctany|) < = (5++) = 1.
s m ™2 2



Moreover

arctanx = arctany <— x =y

follows by the injectiveness of the function arctan.
Also

1 1
d(x,y) = ;] arctan x—arctany| = ;\ arctan y —arctan x| = d(y, x)

is verified.
And the triangular inequality holds

1
d(x,y) = ;| arctan x — arctany| =

1
—|arctan x — arctan z + arctan z — arctan y| <
™

1 1
;| arctan x —arctan z| + ;| arctan z —arctan y| = d(x,z) + d(z,y).



However this distance does not enjoy the scaling property, and it
can not be obtained by a norm

Observe that the open ball of centrum 0 and ray 1 in (R, d) with
d(x,y) = %|arctan x — arctan y|

1
B(0,1) = {x : —|arctanx — arctan0| < 1}
m

1
—|arctanx —arctan0| <1 <= |arctanx| < Vx e R
™

It is all the space R.



Definition

A sequence (xp) x, € R™ is a convergent sequence if there exists
a € R™, (the limit of the sequence) such that ||x, — a]| — 0 as

n — 0.

We say (x,) converges to a, and we write

X, — a also limx, = a

Definition
A sequence (xp) x, € R™ is a Cauchy sequence if Ve >0 3v > 0
such that ||x, — xm|| <€, Vn,m>v

Definition

A sequence (xp) x, € R™ is a Cauchy sequence if Ve >0 Jv >0
such that ||x,41p — x|l <€, Vn>v, Vpe N

Let (xn) xn € R™, a € R™ we write

Xn = (Xp1,---,Xnm) and a=(a1,...,am).

Then x, — ain R <= x, — ax in R, for any k.



Definition
A sequence (x,) in a metric space is a Cauchy sequence if

Ve>03INeN :d(xpxk)<e  Vh k>N

Definition
A Banach space X is a normed space and complete with respect to
the metric induced by the norm .

Recall

Complete: every Cauchy sequence is convergent in X

Complete: no "points missing” from the set. The set of rational
numbers under the Euclidean metric is not complete: one can
construct a Cauchy sequence of rational numbers that converges
to a number € Q



The Fibonacci numbers, F,, form a sequence, the Fibonacci
sequence, such that each number is the sum of the two preceding
ones, starting from 1 and 1.

Fo=1 FA =1,

and
Fn - n—1+Fn—2

1, 1,2, 3,5, 8, 13, 21, 34, 55, 89, 144, ...



Exercise: Consider the sequence

Show that it is a Cauchy sequence of rational numbers. Indeed

o n+1_ Fn _
P sl = [T — 2
|Fn+1Fn 1— F2|
anan

Fn+1:Fn+Fn71 Fn: n72+Fn71
’FnFn—1+F3_1_FnFn—Z_Fn—an‘

F2 |+ FpoFy1
F, is increasing

n

F2

1 + Fn—an—Z > 2Fn—an—Z



Fnanl“‘Fgfl_Fnan2_anan

| <

| F2 |+ FooFp1
’FnFn—1+F3_1_FnFn—2_Fn—1Fn‘
2Fn—an—Z
’—FnFn_z +F2, 1 < 1 Fn  Fnpa
2Fn—l":n—2 _2Fn 1 Fn—2 -

N Rk
2 Fi  Fo

< ...



N2/ R 1\ "2
o< (3) 2 -2)=(3)
example p =3

‘Xn+3 - Xn| = |Xn+3 — Xp42 + Xp12 — Xpi1 + Xpy1 — Xn|

‘Xn+p - Xn‘ < ‘Xn+p - Xn+p—1‘ + ’Xn—o—p—l - Xn+p—2’ +.. ‘Xn+1 - Xn‘

[Xnt+p — Xn| <

1 n72+p71+ 1 nf2+pf2+ N 1 nf2_
5 5 5 =

p—1 1 n—2+k B 1 n—2 P 1 k . 1 n—3
2 —\2 2 2
k=0 k=0

[ay



Exercise. Show that

. Faa
lim —2HL —
n—oo n

with ¢ the golden ratio.

Fn+1:Fn+Fn—1

Fn"‘Fn—l:l_'_Fn—l'
Fn Fn
F, Fr_ 1
o= lim 2 = fim 1+ -2t =1+=
n—00 n n—o00 F, ®

1
Xn—)@:§(1+\/g)

Golden ratio: square root of prime is irrational. Thus is a Cauchy
sequence of rational numbers which converges to a number which
is not in Q



Golden ratio: ¢? = 1+ ¢ The successive powers of ¢ obey the
Fibonacci recurrence:

§0n+1 _ 80" + (pnfl.

It appears in some patterns in nature.



Recall: it is not sufficient for each term to become arbitrarily close
to the preceding term to get a Cauchy sequence.

Take
an =+/n,
the consecutive terms become arbitrarily close to each other:

1 1
< .
Vn+1++yn 2yn
However, with growing values of the index n, the terms become
arbitrarily large. For any index n and v > 0, there exists an index
m large enough such that a,, — a, > . (Take m > (y/n+7)2))
Hence, despite how far one goes, the remaining terms of the

sequence never get close to each other. The sequence is not a
Cauchy sequence.

an—&-l_an:\/n"'_]-_\/ﬁ:




f: X — X fixed point x: f(x) = x Any continuous function
f :[0,1] — [0, 1] admits a fixed point. Apply the intermediate
value theorem to
g(x) =x—f(x)
taking into account g(0) <0 e g(1) > 0.

Definition
Let (X, d) a complete metric space. A contraction mapping is an
application T : X — X verifying the property

d(T(x), T(y)) < Ld(x,y),
with L real, positive and strictly less than 1:

O0<L<1



The Banach-Caccioppoli fixed-point theorem is a well-known
theorem in the theory of metric spaces: it gives the existence and
uniqueness of fixed points of certain self-maps of metric spaces.
Moreover it provides an iterative method to find it.

Theorem

Banach-Caccioppoli Theorem.

Let (X, d) be a complete metric space and let T : X — X be a
contraction mapping. Then T has a unique fixed point X:

T(R) =%



Exercise

Flx) = {xlogx—x x>0
0 X =

f'(x)=Inx+1-1=0«<= x=1 f(1)=-1 f(0)=0,
f(a) =a(lna—1)

max f(x) = 0 Osase
" lalna—a a>e



Example

A metric space is the set of continuous functions in a closed and
bounded set [a, b] with the metric

d(f7g)=r[gi>]<!f(><)—g(><)l



In [0, e] we consider

f(x) =

x log x x>0
x=0

Set g(x) = x.
Compute d(f, g).

h(x) = |xInx — x|,

find the maximum in [0, €].



Show that

2 2
xygx——i—y—, forallx,y € R
2 2
Show that
%
xy§ex2+4—, forallx,y e R,e >0
€
Show that

Ix+ 2 = Ix* +2x-y + |ly|>  forallx,y € RY,
From Holder inequality, show Cauchy-Schwartz inequality
-yl < Ixlllyll - forallx,y € RY,

Show

-yl < Iyllsolixlls forallx,y € RY,



Topology with the metric.
A ball with centrum xg and ray r is defined as

B/(x0) == {x € R™ :d(x,x) < r}.

A set A C RN is open if every point of A is the centrum of a ball
C A. This means

Vxo € Adr>0: By(x) C A.
The set of all open sets gives the topology generated by the metric.
Proposition

In a metric space any ball is an open set, every | ] of open set is an
open set, the () of two open set is an open set.



Proof.
Indeed Vx € B,(x0) 3r1 : By(x) C Br(x0). We fix

n=r— d(X,Xo).
Take y € B,(x) then d(y,x) <n =
d(y,xo0) < d(y,x)+ d(x,xp) <

r—d(x,x0) +d(x,x0) =r

this means y € B,(xp). Let us show now that every J of open set
is an open set. We consider a class of set A; of open set. Let

x € UA;. x € UA; = di such that x € A;. Since A; is an open
set Ir > 0 such that

Br(X) C A; CUA;

The [ of two open set is an open set: take the minimum of the
rays. L]



Sequence in R™ and convergence in norms
Proposition
Let (xn)(yn) two sequences with xp,y, € RMand (\,) C R.

» The limit of a convergent sequence is unique : if x, — a and
X, — b, then a = b.

» If x, — a,then x,, — a for any subsequence (x,,) of the
sequence (xp).

» Ifx, — aandy, — b, then x, +y, — a+ b.

» If \p — A (inR) and x, — a (in R™), then \px, — Aa (in
R™).

» If x, — a (in R™), then ||x,|| — ||a|| (in R).



Definition
A sequence (xp) xp, € R™ is bounded if there exists L € R such
that ||x,|| < L Vn.

All converging sequence are bounded and

Theorem
(Bolzano—Weierstrass) Any bounded sequence of R™ admits a
converging subsequence

Example

» If m =1 we have the usual definition of convergence of
sequences for real numbers



Interior, Exterior, Boundary of Sets.
Let X C R™ and x € R™.

>

>

v

x is an interior point of the set X if there exists r > 0 such
that B,(x) C X.

x is an exterior point of the set X if there exists r > 0 such
that B,(x) C R™\ X.

x is a boundary point of the set X if
B.(x)NX #0

and

B(x) N (R™\ X) £ 0
for any r > 0:
The set of interior points : int(X)

The set of exterior points : ext(X)
The set of boundary points : 90X



Let X C R™.

» The sets int(X), ext(X), 0X are a partition of R™: they are
disjoint and their union gives R™.

Let X CR™ and x € R™.
Definition
x € X if the ball B,(x) N X # () for any r > 0.
Let X C R™. X is an open set if Vx € X there exists r > 0 such
that B,(x) C X
» The union of any number of open sets, or infinitely many
open sets, is open.

» The intersection of a finite number of open sets is open.
Observe: the intersection of an infinite number of open sets is

not an open set: example (—2,1). The intersection is {0}: a
closed set.
Definition

A complement of an open set (relative to the space that the
topology is defined on) is called a closed set.



Definition
X bounded <= there exists a real positive constant L such that

x| <L VxeX

The diameter of X
diam(X) = sup{d(x,y),x,y € X}.

Definition

If diam(X) = +o0 then X is unbounded
Definition B
X is the smallest closed set such that X C X

Proposition
Let X C R™ and x € R™, then

xe X < 3(xp) C Xandx, — x



Definition
X is a sequentially compact set V(x,) C X there exists a
subsequence (xp,) with limx,, € X

Theorem
(Heine-Borel Theorem) X is a compact set of the space R™

<= X is closed and bounded



Harmonic Function: Definition in R?

A function f is harmonic in an open set A of R? if it is twice
continuously differentiable and it satisfies the following partial
differential equation:

fo(X,Y)+ fyy(XaY) :O V(X,y) € A

The above equation is called Laplace's equation. A function is
harmonic if it satisfies Laplace’s equation.

The operator A = V2 is called the Laplacian Af = V?f the
laplacian of f. Constant functions and linear functions are
harmonic functions. Many other functions satisfy the equation.



Exercise.
In all the space R? the following functions are harmonic

f(Xv)/) :X2_y2
f(x,y) =€ siny
f(x,y) =e~cosy

Recall
e’ = e cosy + ie*siny.

From complex analysis we have

Let z=x+ iy and f(z) = u(x,y) + iv(x,y).

If f(z) = u(x,y)+ iv(x, y) satisfies the Cauchy-Riemann equations
on a region A then both u and v are harmonic functions on A. This
is a consequence of the Cauchy-Riemann equations. Since u, = v,
we have uy, = vyx. Likewise, u, = —v, implies u,, = —v,,. Since
we assume Vy, = Vy, we have uy + uy,, = 0. Therefore u is
harmonic. Similarly for v.

As example we may consider e = e*cosy + ie*siny.



Hessian matrix f € C2

Hf = ( fxx(XO,_)/O) fxy(X07YO) )
fy(x0,¥0)  fyy(x0, ¥0)

Tr(H) = Af



Partial Derivatives Partial Derivative f in X

Definition

f(X1y. s Xi+hyoo o Xn) — (X1, 0oy Xy e

, Xn)

£ (x) = li
’(X) hlno h

if the limit exists and it is finite.

Recall

Definition

Q open set -
feC’(QncQ)

Af = Z o
i=1

)



Exercise
(Exercise 08/03).

Compute Df
i) F(x) = |Ix]®
i) x 70 f(x) = [Ix]
i) n>3 x#£0 f(x) = ||Ix|*"
i) F(x) = [Ix]® ,
x| = 5+ + -+ x;
f = 2X;
i) £(x) = Il
Il = PG 4G+ xE = (G 4G+ D)}
1 2x; X;
X#0f =20 =0
2] I

i) For n>3 x#0 f(x) = ||x[*™"

Xi

fo=(2—n)|x|* "L =



Laplace operator

i) F(x) = [Ix]?
i) x # 0 f(x)=||x|
i) n>3 x#0 f(x)=|x||*

) F(x) = X[ B = 2 fig, =2 A[x]|* = 2n

i) x # 0 f(x) = |Ix|l fs = 3755 = 1
1 X,-2
XjXi HXH HX||3
1 1
Allxll = nr =0



i)
n>3x#0 f(x)= Hx||2_'7

X
o=@ n)lIxI"" 0 =
: Ix]
X:
(2 - n)i’
X

1 —n—
ﬂ(iXi = (2 - n) HXHn - n(2 - I'I)X?HXH "2

1 1
2
AHXH n:(z_n)onH” _(2_n)nHXHn =0



Poisson formula in the circle.
We consider the Laplace’s equation in the circle x? 4+ y? < R?,
with a prescribed function at the boundary x? + y? = R2.

foc (%, ¥) + fy(x,y) =0 X2 +y? < R?,
f(x,y) =g(x,y) x? +y?=R2

This is a boundary value problem on a circle of radius: Dirichlet
problem for the Laplace equation in the circle.



Since we are looking for the solution in the circle we consider polar
coordinates

F(r,0) = f(rcos@,rsinf)

Solving in polar coordinates we get

1 1
Fr(r,0) + ;Fr(r,ﬂ) + r—zF(%)(r, 0) =0,

0<r<RO<6<2r

F(R,0) = G(0) = g(Rcosf, Rsinf)

0<6<2r



We assume that the solution may be obtained as a product of two
functions, one depending on r and the other one on 6.

F(r,0) = H(r)K(9)
K is bounded and 2zperiodic, and H bounded.



HY(r)K(6) + - H(P)K(0) + 5 ()K" (6) = 0

1 " 1 1 '(r
R (r)K(9)+7(r)K(9) CH(K(0)+
Lr2H"(r)+r 1 (r) =

H(r) H(r)
! —K"(0) = m?

K(9)
K"(0) + m*K(60) =0



Why m?? K is 2mperiodic

K"(0) + AK(0) = 0

A<0 = K=Ae VN 4 BV

However, it must be a 2wperiodic function: This function
cannot be 27periodic unless A= B =0

>
A=0= K=A0+B
where A and B are constants. This is not possible unless
A=0.
> A = m2
K"(0) + m*K(8) =0

K(0) = am cos(mB) + bp, sin(mb)



By substitution since K is assumed bounded and 27periodic, we
have

(i) K"(0) = —m?K(0)
K(0) = am cos(m@) + by, sin(mb)

(i) r?H"(r) + rH'(r) — m?H(r) =0



rPH"(r) 4 rH'(r) — m*H(r) =0

This is the most common Cauchy-Euler equation appearing in a
number of physics and engineering applications, such as when
solving Laplace's equation in polar coordinates.

Assuming the solution of the form r® and substituting into the
equation

(i) ala —1)r*+ ar® — m?r* =0



a®>—m?=0

In order for H to be well-defined at the center of the circle, we
obtain the solutions

Fm(r,0) = r™(am cos(mé) + by, sin(mdh)),

and, by linearity, the general solution is an arbitrary linear
combination of all the possible solutions obtained above, that is

(r,0) =ap + Z (am cos(mB) + bp, sin(mb))



Now taking the Fourier expansion of G

+o0
G(9) = %ao + Z(am cos(mf) + Bmsin(mé))
m=1

am and B, are the Fourier coefficients of the function G

27
am== [ G(6)cos(mp)do
™ Jo
1 27

b=~ | G(@)sin(ms)do

0



Observe that from F(R,0) = G(#). Hence we have the following

ap = 5050 am = _mam bm = R_mﬁm



Substituting the Fourier coefficients into the F

2 +00 ™
Fr0) =3 [T 6@l + X () costmlo - o)lae,

0

m=1



Next we observe

We have
1 R
1— Leil®=0) — R—rcos(¢—0)— irsin(¢ —0)




Then

R(R — rcos(¢ —6) + irsin(¢ —0))
(R—rcos(¢p—0)—irsin(¢—6))(R—rcos(¢p—0)+ irsin(p—0))

R? — rRcos (¢ — 0) + iRrsin (¢ — 0))
(R2 —2Rrcos (¢ — 0)) + r?

Observe that
(R—rcos (¢ — 0)—irsin (¢ — 0))(R—rcos (¢ — 0)+irsin(¢p —0)) =

(R — rcos (¢ —0))? + r?sin? (¢ — 0) = R — 2Rr cos(¢p — 0) + r?



Taking the real part of the above computation

1 27

B R? — rRcos (¢ — 0) 1
F(r,H)_; 0 G(qﬁ)<l:\’2—2chos(¢)—9)—i—r2_2>d(Zs

Taking into account

R2 — rRcos (¢ — ) 1

R2 —2Rrcos(¢p —0)+r2 2

2R? — 2rRcos (¢ — 0) — R? + 2Rr cos (¢ — 6) — r?
2(R? — 2Rrcos (¢ — 0) + r?)
1 2w R2 _ r2
F(r,0) = —
(r,6) 27 /0 R2 — 2Rrcos (¢ — 0) + r? G(9)do

This is the Poisson formula for the Dirichlet problem of the
Laplacian in the circle.




The Weierstrass Theorem Karl Theodor Wilhelm Weierstrass

(German: Weierstrass 31 October 1815-19 February 1897) German
mathematician

Recall the Weierstrass Theorem N = 1.



The Weierstrass Theorem Weierstrass Theorem states that if a
real-valued function f is continuous on the bounded and closed
interval [a, b] then f attains a minimum and a maximum in [a, b].
This means that there exist numbers x5, and xp in [a, b] such that

f(xm) < f(x) < f(xm) Vx € [a, b].

Theorem
Let K ¢ RN a bounded and closed subspace and f : K — R
continuous. Then f attains a minimum and maximum on K.



Proof of the Weierstrass theorem

N =1. Let f : [a, b] — R continuous on [a, b].

We need to show that there exists xps such that f attains its
maximum. We know that the set of real numbers admits
sup{f(x): x € [a, b]}, and we set

M = sup{f(x): x € [a, b]}.



We need to construct a sequence such that, following its
subsequence, we are able to reach xy.
We consider an increasing sequence of point y, such that

yn < sup{f(x): x € [a,b]},

and
yn —sup{f(x): x €[a,b]}, n— 40

(if M is finite take y, = M — 1, if M = +00 take y, = n).
Since y, < M, this show that there exists x, such that

f(xn) > Vn

(since y, is not a majorant (an upper bound) of the set

{f(x): xeK}.

The sequence (x,) is bounded. By Bolzano-Weierstrass theorem it
admits a convergent subsequence:

Xp, — X0 xo € [a, b]



Then
Ve < f(xn,) < M,
and
li f(x,)=M
(i,

By the assumption of continuity
f(xn,) = f(x0),

Hence f(xp) = M and xp = xo. Try to adapt the proof for the
minimum. Try to adapt to the multidimensional case.



Maximum Principle for harmonic functions

Let f: X >Rand xg € X
f is continuous on X if it continuous in every point xp € X,

Ve >0 36 > 0 such that if x € X and ||x — xo|| < J, then

|f(x) — f(x0)| <€



The following two properties are equivalent
(a) Ve >0 36 > 0 such that if x € X and ||x — xp|| < 6, then

(x) — f(xo)| <e

(b) (xn) xn € X and x, — xg, then f(x,) — f(x0).



Theorem B
Let Q an open and bounded set of R". Let f € C?(Q)N C(Q) a
real valued harmonic function. Let

M = max{f(x),x € 0Q}

m = min{f(x),x € 90Q}
Then

m<f(x)<M xeqQ.

It states that strict minimum and maximum are assumed on the
boundary.



To prove: f(x) <M xecQ.
We introduce the function

g(x)=f(x)+¢€|x|? xe€Q €>0

The function g. € C2(Q) N C(Q). We may compute the laplacian
as sum of the laplacian of the function f and of the laplacian of
the function ¢ ||x||>.



We compute the
2 2
Aellx||” = eA]lx]|".

X2 = x2 + 33 + -+ + X2

2 2 2
Xl =2xi lixll =2 AlIx[I® = 2n



Then, since
Af=0

2¢n >0

Ag.(x) = Af(x) + 2en > 0.

g. is a continuous function in Q (bounded and closed set). It
admits a maximum point.



We claim: the maximum points of g do not belong to €2.
Proof in the 2-dimensional case: Indeed assume, by contradiction,
that x, is a maximum point in Q, then

Dg.(x.) =0
In the 2-dimensional case we have
Det(ngE(xE)) = Bxix18xox2 _gflxz >0 8axi S0 Boux <0

Then
Age(xe) = Bxxi T 8ox <0.



Since
Ag.(x) >0 Vx € Q,

we proved that the maximum points x, of g. do not belong to 2.



This is true in the n-dimensional case.
Then
X, € 092

g-(x) < max{f(x) + ¢||x||*, x € OQ}.

Since Q is bounded, there exists a positive real number L such that
x| <L xe€Q.
If xeQ
g.(x) < max{f(x) +el? x € 0Q} = M + €l

this means
f(x)+e|lx]|* < M+ el?.

Then the result follows as € — 0.



Try to adapt the proof to
m<f(x) xeqQ,
with

g(x) = f(x) —elx|* xeQ.



Application: Uniqueness of the solution of Dirichlet Problem. Let
Q an open and bounded set. f,g € C?(Q) N C(Q)
The Dirichlet problem

Af(x)=0 x € @)
f(x) = u(x) x € 00
Ag(x)=0 x € 3)
g(x) = u(x) x € 00



Then h = f — g verifies

Ah(x) =0
h(x) =0

x € Q
x € 09



Hence, by the maximum principle, h(x) = 0 in Q , this means

f(x) = g(x) x €2



Exercise
f : R* — R Find the minimum and the maximum of the function

f(x1, X2, X3, X3) = X1X4 — X2X3
under the constraint

2 .2 2 2
l=x{+x +x3+x;



Observe
0< (31— xa)? =X+ x& — 2x1x

0< (e+x3)° =35 + 5 + 2x0x3
2 2 Lo o
2x1xa < X+ x5 = x1xg < §(x1 +x3)
Similarly
2 2 1 2 2
—2x0x3 < X5 +x3 <= —xox3 < §(x2 + x3)
Then

1 2 2 2
f(x1, %2, X3, Xa) = x1xa — XoX3 < E(Xl + x5 + X3 +x3)

Lo, 2, 2, 2
f(x1, X2, X3,Xa) = X1X4 — X2X3 > —§(X1 +x5+x3 +x3)



Hence the maximum is % and the minimum is —%.
f(x1, X2, X3, Xa) = X1X4 — X0X3

The maximizer points are

11 11 11 11
G323 G323
11 1 1 1 11 1
(237272 (3737272
The minimizer points are

1111 111 1
22272 G2772

1 1 11 1 1 1 1
222 Gy Y



Exercise
f : R* — R Find the minimum and the maximum of the function

f(x1, X2, X3, Xa) = X1X4 + X2X3
under the constraint

2 .2 2 2
l=x{+x +x3+x;



Exercise
Find the minumum and the maximum of the function

f(xi, %) = x1 +x
on the circle xi + x3 < 2

Exercise
Find the minumum and the maximum of the function

Fx1,x2) = |xa| + el
on the circle x? + x3 < 2

Exercise
Let M > 0 given. Maximize the function

f(x1,x2) = x1x2

with the constraint xl2 + x22 =M2, x>0 x >0.



2-d: f(x1,x0) = e~ (i)

Compute -
f (x) = —oxe itx) —
fo(x) = —2xpe” (i) = 0
<~ (X1,X2) = (O, 0)
Compute

C(x24 52 (22
fx17X1 = —2e (X1+X2) —|—4X126 (X1+X2)

C(x24 52 (2132
fx2,x2 = —2e (X1+X2) +4X22€ (X1+X2)



2 2
— _ — (X7 +x
fxl,xz — f;Q,xl — 4X1X2€ ( 1 2)

Write the Hessian matrix

—2e~0dH%) 4 4x2e (%) Axyxpe— O3
dxqyxpe—(EH3) e (4+x33) 4 4X22€—(X12+X22)



Observe that (0,0) is a maximum point. Indeed

(0 %)

has positive determinant (= 4) and negative first element (= —2).



Observe that the function is less than one in all R?.
For all x € R? we may compute the determinant of the matrix

6_2(X12+X22) -2+ 4X12 4x1x
dx1x -2+ 4-X22



The computation gives
efz(X12+X22)[(—2 +4x3)(—2 + 4x3) — 16x2x3] =

e 20D (4 — 8(x2 + x3))



a b
o-(3¢)
Given the associated quadratic form

ahi + 2bhyhy + ch3

This is equal to

b, \? e
a(hl + h2> Iy~
a a



Definition
Assume f € C?(A). The Hessian matrix is (By Schwarz theorem it
is a symmetric matrix)

Hf (x0) = (fiux;(x0))ij=1,n



In 2 — d the Hessian matrix is

0 f

(H)s = 5t

ihj=172

the symbol dx;0x; means that we first we take the derivative with
respect to x; and then with respect to x;.

_ ( fXX(X07.y0) fxy(X07)/0) )
Hf =
foy (X0, ¥0) £,y (X0, Y0)

£y 2 f f, — £ 2
fxx(xo,yo)<h1+ y(XOaYO)h2> n (%0, ¥0)fyy (X0, Y0) — fiy (X0, ¥0) .
fxx(XOa)/O) fxx(X07YO)



Lagrange Multiplier Method

First order necessary condition.

» 2 — d: given a function f € C*(A), with an open set A C R?,
and (xo, yo) € A we know that if (xo, yo) € A is a relative
minimum and maximum point (extremum) then
Vf(xo0,¥0) = 0: this means £f(xp,y0) =0 f,(x0,¥0) = 0.

» The converse is false: Vf(xp, o) = 0 does not mean that x
minimizes or maximizes f. Such a point is actually a
stationary point, and could be a saddle point or a local
maximum of f, or a local minimum.Vf(xp, yo) = 0. is
necessary, but not sufficient for (xg, yp) to minimize or
maximize f.



Minimum and Maximum in compact sets Assume that f € C*(R?)
is a function of two variables and that K is a closed and bounded

subset of R2. On such set K, f attains its absolute minimum and

maximum.

» Find the critical points of f which lie inside the region K.

» Find the critical points of f on the boundary of the region K.

» Evaluate the function at all the points you found in the
previous steps to find the greatest and least values.



Lagrange multiplier method
Go back to step

» Find the critical points of f on the boundary of the region K.

This means that we consider a function F among points that lie on
some curve. The question is the following:

» Assume that f is computed along a regular curve
(x(2), (1)), telab],

F(t) = f(x(t),y(t))  telab]

The question is to study first order necessary condition for
extremisers along the curve.



If (x0,¥0) = (x(t0),y(t0)), to € (a,b) is an extremum then
F'(to) = fu(x(to), y(t0))x'(t0) + £, (x(t0), ¥ (t0))y" (t0) = O.

This means that Vf is orthogonal (or normal, or perpendicular) to
the tangent line (or simply tangent) to the curve in the point.
If the parametric equation of the curve is (t, h(t)), the condition is

F'(to) = fi(x(to), y(to)) + £, (x(t0), ¥(t0)) W' (to) = 0.



Implicit Function Theorem

Theorem
Let A an open set C R?, let g € C1(A), let (xo,y0) € A, assume
i) g(x0,y0) =0,

ii) g(x0, y0) # 0.
Then there exist two positive constant a and b and a function h

h:(XO_a7X0+a) - (yo_bay0+b)a

such that

g(x,y) =0 (x,y) € (xo—a,x0+a)x(yo—b, yo+b) <= y = h(x).

Moreover h € Cl(xp — a,xq + a) and



Consider the function g : R> — R given by g(x,y) = x*> +y% — 1.
Choose a point (xo, o) with g(xo, y0) = 0 but not xp = —1 or

xo = 1. Then there is an open interval in R (xo — a,xp + a) and an
open interval (yo — b, yo + b) with the property that if

x € (xo — a,xp + a) then there is a unique y € (yo — b, yo + b)
satisfying g(x, y) = 0. We can then define a function
h:(xo—a,xo+a) = (yo — b, yo + b) for which g(x, h(x)) = 0.

In the example we are able to explicitly solve: take y > 0 then

y = h(x) =v1-—x2.



Next, we observe that the regular curve may be given as the 0-level
set of a function g

V={(xy): glxy)=0}

Example
{(x,y) € R?: ax + by = 0} : line
Example

{(x,y) eR?: §+ %2 —1=0}: ellipse

V is the constraint



We go back to the condition

F'(to) = £(to, h(t0)) + £, (to, h(to))H(to) = 0.
Substituting the value of the derivative

/ B gx(t ,h(t )) —
F'(to) = f(to, h(to)) + f,(to, h(to))m -0



Finally we get the condition

Vf(x0,y0) + AVg(x0, ¥0) = 0
A is the Lagrange multiplier.
We define the Lagrangian

L(x,y,A) = f(x,y) + Ag(x, ).

f,g € C' and Vg(xo, y0) # 0.

If (xo0,y0) is extremum (a minimum or a maximum point) of the
original constrained problem, then (xp, yo) is a stationary point for
the Lagrangian.



The approach of constructing the Lagrangians and setting its
gradient to zero is known as the method of Lagrange multipliers.
Observe that not all stationary points yield a solution of the
original problem, as the method of Lagrange multipliers yields only
a necessary condition. It only gives us candidate solutions.



Lagrange Multiplier method

Joseph-Louis Lagrange or Giuseppe Luigi Lagrangia

Torino 25 January 1736- Paris 10 April 1813.

The great advantage of the method is that it allows to solve
optimization problem without explicit parameterization in terms of
the constraints.

» Problem: Minimize (or Maximize) the objective function
under contraints.

{min (max)f(x)
g(x)=0



Observe that the Lagrangian £ depends on (x,y, A) and that the
system to solve is

Ly(x,y,A) =0
Ey(XaYa)\) = 0
La(x,y,A\)=0



The last equation is the constraint equation and the system is

Li(x,y,A) = fx(x,y) + Agx(x,y) =0
Ly(x,y,A) =1f,(x,y) + Agy(x,y) =0
g(x,y)=0

Next, we solve an exercise following a previous method based on

parametric equation of the boundary and then we apply the
method of Lagrange multiplier.



Here we use the parametric equation of the curve.
Maxime f(x, y) = 4xy under the constraints

2 2

X—+£—2:1 a>0,b>0
x >0, y >0

Observe that if x =0 or y = 0 then f(x,y) = 0. Since we are
considering a maximization problem we consider positive x and y.



The parametric equation in (0,7/2).

F(t) = 4abcos(t)sin(t) = 2absin(2t) t € [0,7/2]

F'(t)=0 < cos(2t) =0 2t:g+kﬂ tozg

xo = x(to) = av2/2  yo = y(to) = bV2/2



Lagrange multiplier method: exercises
a>0,b>0

with x > 0, y > 0: this is a constraint with inequality: they will be
treated with the KKT (Karush-Kuhn-Tucker) conditions, Indeed
the method of Lagrange Multipliers is used to find the solution for
optimization problems constrained to one or more equalities. If the
constraints also have inequalities, we need to extend the method to
the KKT conditions.

Observe that if x =0 or y = 0 then f(x,y) = 0. Since we are
considering a maximization problem we consider positive x and y.



b2
We set
VL=0
4y + 2 =0
4x+2%:0




By the first equation

substituting and making the computation

2 _y
a2 b2

The positive solution is

Then



a, b, c > 0. Maximize
f(x,y,z) = 8xyz,

with constraint
X2y 22

x>0,y>0,z>0.

Observe that if x =0 or y =0 or z =0 then f(x,y,z) = 0. Since
we are considering a maximization problem we consider positive x,
yand z .

2 2 2
E(X,y,z,/\):8xyz+)\(%+%+%—l)



8
Yz
+ 2Xx
a2X =

8xz +
> 22y
y + bzy_
&—0
c22:

x2
22
P
bz—i_Z2
z=1



From the first equation

42
N Aayz

X
8x%zb?> — 8a%y?z =0
8x%yc? — 8yz%a®> =0

x2 | y2 2
?+p+?—1



Simplify

Then

N

mm‘ ><N mm‘ xmmw‘ X

NN

TSN IS



Hence



Let a; >0Vi=1,...,N. Maximize

N
f(x1,x2,...,xn) = 2NHX,-,

under the constraint

X2
§ N1, x>0vi=1,..,N
— 3
i=1 !
Observe that if x; = 0 for some index i then f(x1,x2,...,xy) = 0.

Since we are considering a maximization problem we consider
positive x; for all i =1,... N.



L(x1,x2,. ..

8£(X1,X2, ey XN )\)

7XN,

an

_2fpﬂm§:%—n

2NII

i=1,i#k

2)\Xk

k

=0 k=1,...



From the first equation (k = 1)

N—-1_2TTN .
/\:_2 at | [izo xi

X1
Substituting in the other equations

N

N
2Naix12 H x,-—2kaa%Hx,-:0 k=2,...

i=2,ik i=2



Simplify

2.2 2.2
Xy — kc?l:O k=2,....N
Hence

(X _ %

2 T 2

a a

Xi Xa

1%

32 a%

< xR

2= &
YE %=1

=132 =



whose positive solution is




Taylor's Theorem

Optimization without constraints

Optimization means we are trying to find a maximum or minimum
value. Any constraints appears.

» Local Extrema. If a point is a maximum or minimum relative
to the other points in its neighborhood, then it is a local
maximum or local minimum.

» Global Extrema. If a point is a maximum or minimum relative

to all the other points on the function, then it is a global
maximum or global minimum.



Definition

Let A an open subset C R” and f : A — R, xg € A. Assume that
there exists r > 0 such that for all x € AN B,(xp) we have

f(x) > f(xo), then xg is a local minimum point and f(xp) is the
local minimum.

Definition

Let A an open subset C R" and f : A — R, xg € A. Assume that
there exists r > 0 such that for all x € AN B,(xg) we have

f(x) < f(xo), then xp is a local maximum point and f(xp) is the
local maximum



Taylor's Theorem (Lagrange form of the remainder)

Theorem
Assume f € C?(A). x, x+h € A, x+thin Awitht €[0,1], h
sufficiently small. There exists 0 € (0,1) such that

f(x + h) = f(x Z (x)h; + = fo,xjxwh)

I,Jl



From x(t) = x + th with h € R"” t € [0, 1] with h small such that
x + th € A. We set

F(t) = f(x + th).
Applying the rule the chain rule (it is the formula to compute the

derivative of a composite function) with x(t) = x + th, we get

n

F/(£) =3 f,(x + thyh,
i=1
and

n

F'(£) = fux(x + th)hihj,
ij=1



Applying Taylor's formula for 1 — d
1
F(1) = F(0) + F'(0) + EF”(Q)
with 6 € (0,1).
Putting in F(t) = f(x + th) we obtain

F(1)=f(x+h) F(0) = f(x)

F0)=> f()h  F'(0) = Z Frox, (X + Oh)hihy,

i=1 ij=1
n 1 n
F(x+h) = f(x)+ > f(x)hi+ 5 D fasg(x + Oh)hih;

i=1 ij=1



Taylor's Theorem (Peano form of the remainder)
The Frobenius norm of the matrix A is defined as

n
> aijl?

ij=1

1Al =

We will need the following inequality
Proposition

Assume A a matrix n X n. Assume h in R". Then

IAR] < [|A][ ]I All



Ah =

anl

an3

+ alnhn

+ annhn



The Ah norm is

n

”Ah” = Z(ailhl + ajphy + ajzhz + ...... + a,-,,h,,)2
i=1

[|A] <

n n
SN2 Ikl = (Al Al

i=1 j=1




Then
|Ah - h| < || A [|A]| < [|A]|[|A]?

We show the Taylor formula in R” (Peano form of the remainder)

n

f(x+h) = f(x Z Z frsg (X) i+ o(||h]*) h— 0

I,j:l



We need to show

n n

S fag(x + 0n)hihy = > fo(x)hih; + o([[]*) h— 0
ij=1 ij=1

n

D (s (x + 0h) = fix (X)) hih; = o[ ]|?)
ij=1



Thanks to the previous inequality (with
A = D?f(x + 0h) — D*f(x)))

So7 iy (s (x + Oh) — &,-XJ-(X))hihj‘
1412

< ||D*f(x + 6h) — D*F(x)||



Since f € C%(A) then
lim || D*f(x + 6h) — D*f(x)|| =0
h—0

Then we state

Theorem
Assume f € C?(A). x, x+h €A x+thin Awithte[0,1], h
sufficiently small. then

n 1 n
Fx+h)=Fx)+) fia(x)hi+ 5 > fux () hibi+o(|[Al*) h—0
i=1 ij=1



f(x,y) =cosx +siny

Find local minima and maxima points.

a%f(x,y):O — —sinx =0 . x = k7 k e
9 ¢ )=0 cosy =0 y=75+jm J €z



Hessian matrix

won=("5" 5,)
Atr 340 = (70 (L)

det(H) = (~1)**

. Hence if k and j both are odd or both are even
det(H) = (-1)*k=1>0



To study the extrema we consider

(~1)

If k is even then (km, % +j7r) local max
if k is odd then (km, 5 +j7r) local min



Then if k and j are both even (k7,5 +j7r) local max. If k and j
are both odd then (km, 5 + jm) local min.



f,y)=x>+y* = (1+x+y)?

Verify that A = (—3, —%) is a local maximum point.

%:3x2—3(1+x+y)2:0
=32 -3(1+x+y)=0



Df(—=,—=)=0
( 3’ 3)
The Hessian matrix
H= ( o ngy>
Ox0y ay?
O%f O%f
ﬁ:6x—6(1+x—|—y) a—y2:6y—6(1+x+y)
O%f
= —6(1
Oxdy (1+x+y)

Foc (6, )y (%, y) — iy (x,y)? =
= (6x —6(14+x+y))(6y —6(1+x+y)) —36(1+x+y)? =
36[(x — (1+x+y))(y —(1+x+y) — (1+x+y)7



x=(1+x+y) —(1+x+y)

‘ _

detH) =361 (1 4xty) y—(L+xty)
A=(-3-3)
—2/3 —1/3
36‘—1/3 —2/3|>O
9f 1 1
373 <0

,—1) is a local maximum point

—~
|
Wi



Hessian Matrix
@ matrix

Q= < qi1 qi2 )
q21 Qg22



di2 = Qgo1
h" Qh = qu1h? + 2q12h1ho + qzzhi,
Definition

We say Q positive semi-definite, if the quadratic form h” Qh is
positive semi-definite, this means

2
h"Qh=">" gijhihj >0,Yh € R?,
ij=1

and there exists h £ 0 € R2 such that hTQh =10



Example

Definition
We say Q is positive definite if the quadratic form h” Qh is positive
definite, this means

2
h"Qh=">" gijhihj >0,¥h#0 € R,
ij=1



Definition
We say Q is negative semi-definite if the quadratic form h'” Qh is
negative semi-definite, this means

2
h"Qh=">" gijhihj <0,Yh e R?,
ij=1

and there exists h £ 0 € R2 such that ATQh =10



Definition
We say Q is negative definite if the quadratic form h™ Qh is
negative definite, this means

2
h"Qh=">" gijhihj <0,¥h#0¢c R,
ij=1



A matrix Q is called indefinite if there exist h e h tali che

n n
Z q;Jﬂiﬁj >0 Z q,-ylew,-lAvj <0
ij=1 ij=1

Exercise

Find examples of positive definite matrices, positive semi-definite
matrices, negative definite matrices, negative semi-definite
matrices, indefinite matrices.



Let

Q= ( q11  q12 >
ae1 g2

Q| = detQ = qu1q22 — (q12)°.

a symmetric matrix.

Then

|Q| >0 and g11 >0, = Qispositive definite



|Q] >0 and g11 <0, = Qisnegative definite
If detQ < 0, then @ is indefinite.

a b
°-(3¢)
Given the associated quadratic form

ah? + 2bhyhy + ch3

This is equal to

2 K2
a<h1+bh2> LA,
a a

hence the result.



Definition
Assume f € C?(A). The Hessian matrix is (By Schwarz theorem it
is a symmetric matrix)

Hf (x0) = (fax;(x0))ij=1,n

In 2 — d the Hessian matrix is

Pf

(Hf)w: m 1,] =

1,2

the symbol 0x;0x; means that we first we take the derivative with
respect to x; and then with respect to x;.



e

fxx(X07 )/0)
fxy(X07 yO)

f;(y(XO) )/0)
fyy (%05 ¥0)

)



Go back to the n dimensional case . If xg is a stationary point
Df(xo) = 0, the Taylor formula gives

1
f(x0+ h) = f(x0) + 5 D*f(x0)h - h+ o(|[h][*), h—0
If D2f(x0)h-h > 0 then locally (in a neighborhood of xg)
f(x) > f(xo)-

Then xg is a local minimum point



If D2f(x0)h - h < 0 then locally (in a neighborhood of xg)
f(x) < f(xo)-

Then xg is a local maximum point



Theorem

Sufficient second order condition.

Let A an open set. Let f € C?(A). If xo is a stationary point
(Df(xo) = 0) and the Hessian matrix in xo is definite positive
(negative) then xo is a local minimum (maximum) point.



Quadratic Form
A quadratic form is a polynomial with terms all of degree two.

Za,dhh —sZa,,h —|—Za,dhh

ij=1 i#j

A = (a; j) symmetric matrix.
Scalar product
q(h) =Ah-h

A'is a symmetric n X n matrix, his n x 1, and - denotes the scalar
product between vectors.



Example

q(hy, ha, h3) = h3 + 3h3 + h3 — 24hyhy — 6hyhs + 2hahs

The symmetric matrix A

1 -12 -3
-12 3 1
-3 1 1

Let A be a be a square symmetric matrix of order n. A is called
positive (negative) definite if hT Ah is positive (negative) definite

hTAh =) " qijhih; >0 (hT Ah < 0)vh € R", h+# 0.
ij=1



Problem
> How to show that A is positive definite or negative definite?

Let A be a square matrix of order n and let A be a scalar quantity.
Then
det(A— M)

is called the characteristic polynomial of A: it is an n degree
polynomial in A and det(A — Al) = 0 gives the eigenvalues of A.



A polynomial of n degree may have complex roots. For symmetric
matrices we have

Theorem

The eigenvalues of symmetric matrices are real.



Eigenvalues Test

Theorem
Let m be the smallest eigenvalues and let M be the largest
eigenvalues of the symmetric matrix of n order A. Then

m|lh|[? < Ah-h< M|h|®> VheR"



We consider .
F(hy=Ah-h="" ajhihj,
ij=1
in the set
K={heR":|h|| =1}.

F is a continuous function on the compact set K, by Weierstrass
theorem the function F admits a global minimum m and a global
maximum M on K.



Let h, be global minimum point in K and let hys be global
maximum point in K. This means

[hml =1 [lAmll =1

F(hm)=m F(hy)=M

VheR": ||| =1

we have n
F(hm) <Y ajhib; < F(hy)
ij=1
Fix b
M= 377 h 7& 07 h € Rn
i
| 2

Iul=1, pek



n e
Z Qjj iy
<
" ij=1

'J
1 Z 2

] ’hﬂ (A2

n '“J'ZZ J||h

.-y,/

Z"’U

ij=1
ij=1
ij=1

ij=1
ij=1



We set

HhH I >

ij=1
Since

hp, is minimum point for the function G, hy; maximum point for
the function G.



We compute the first partial derivatives of G and we will set

G
Oh;
0G
Oh;
From this we will find that m, M are eigenvalues of the matrix A.

(hm)=0i=1...n

(hm)=0i=1...n



0G 0 1 1 0
=(Ah-h——+ ——Ah-h) =
oh; ( Ohi |h|> " ||h[> Oh; )

We compute

o ( 1\ _ 9 1 . 2h; 3
om \|h?)  Om\h+h+...h2)  (RB+h+... h2)2

2h;
[l




Next, we compute

We have

a1l
ari

ai1

anl

a2
az»

an2

—Ah-h
Oh;

aij
az;



ax1hy + axphy + anzh3 + -+

Ah =

aphy + amhy + apzhs + -+

ailhl + a,'2h2 =+ a,'3h3 —+ ..

+ aijhi + -+ ainhy
+ azihi + - + az2nhn

+ ajihi + -+ ainhy

+ anihi + -+ + apnhn



Ah - h = (a11h? + aiahihy + aizhihs + - 4 agihihi + - - - + aiphhy) +
(ax1hihy + axah3 4 apzhshy 4 - - - 4 apjhiho + - - - + azphphy) +

(aithihi + aiphoh; + aighshi + -+ + ajih? + - -+ + aiphah;) +

(anlhlhn + an2h2hn + an3h3hn +---+ anihihn +--+ annh%)



5?7. ( > a,-,,-h,-hj) = 2ay;hy + 2apihy + - - - 4 2ajihi + - - + 2a,ih,
" Nij=1

Since A is a symmetric matrix

(Za,dhh) fzzaj, ;.

ij=1

oG 2 ( Ah-h >
i hi
8h ||h|| Z aj,ihj — HhH2

Hence



Denoting by DG the gradient of the function G from the previous
computation we have

DG(hm) =0 <= Ahm — G(Am)hm =0

DG(h/w) =0 < Ahpy — G(hm)h/\/] =0,
then G(hy,) = m and G(hy) = M are eigenvalues of A.



If pis such that Ah, — ph, = 0 then

G( p)_ Ahy - hy < M
thll

Ahy - hy = phy - hy = pIhy%
m<p<M

m, M are the smallest and the largest eigenvalues of A.



1

mgcw)|wﬁ2pwh<M h+#0,
ij=1

ml|h|? < Ah-h < M|h|* VYheR"



Corollary

Let A be a symmetric matrix of n order. A is positive definite
<= all the eigenvalues are positive.

Corollary
Let A be a symmetric matrix of n order. A is negative definite
<= all the eigenvalues are negative.

The proof follows from the previous theorem.



f(x,y,2) = x>+ 2%y + zy
Compute the gradient of f and set it = 0. Find the points.



PO — (07070)7
Pl = (0707 _1)7

Compute the Hessian matrix



Classify the points (0,0,—1) and (0,0,0)



|H(0,0,—1) — M| = |H(0,0,0) — M| = (2= \)(\*> = 1)
Saddle points



Eigenvalues of A
Find the eigenvalues of A.The n degree polynomial in A and

det(A—\) =0

gives the eigenvalues of A.



» Fundamental theorem of algebra:
Every non-zero, single-variable, degree n polynomial with
complex coefficients has, counted with multiplicity, exactly n
complex roots.

» The Abel-Ruffini theorem states that there is no solution in
radicals to general polynomial equations of degree five or
higher with arbitrary coefficients.



Solving cubics

A —BX2 2\ +24=0

It helps if we know one root: A = —2 is a solution of this equation:

(—2)3 —5(—2)?+4+24=-8-20+4+24=0

Factor Theorem

(A+2) (A2 +bA+c) = (A+2)(N2=7A+12) = (A+2)(A—3)(A—4)



Descartes’ rule of signs.
Order the terms of a single-variable polynomial with real
coefficients by descending variable exponent

P(\) = +X3 —5X2 —2A+24 =0

The number of positive roots of the polynomial is either equal to
the number of sign differences between consecutive nonzero
coefficients, or is less than it by an even number.

Multiple roots of the same value should be counted separately.

P(A) = +X3—5X2 —2A+24=0

2 changes of sign: in the example two positive solutions. Solution
for A (—2,3,4)



In a cubic no sign change means no real positive root, one change
means one real positive root, two sign changes means two real
positive roots or none, three changes means three positive roots or
one.

P(A) = +X3 +5X2+2X+24 =0
no real positive root. Solution for \ =
(—5.44271,0.22136 + 2.0882,0.22136 — i2.0882)

P(A) = +X3+5X2+2XA—24=0
one real positive root. Solutions for A ~
(1.744,—-3.372 + i1.54633, —3.372 — i1.54633)

P(A\) =+X3 —5X2 42X —-24=0

three positive roots or one. Solutions for \ =:
(5.44271, —0.22136 + i2.0882, —0.22136 — i2.0882)



Real positive solutions.

Necessary condition to get real positive solutions.
Sharaf al-Tusi (Tus, 1135-Baghdad, 1213) .

a, b > 0. Real postive \.

A3+ a=b)
A1 positive solution

M <A +a=bN

hence

A < \/E
On the other hand b\ — A3 has a max in the point A = 1/b/3 Then

2< bV/b3~ (VB3) = 2 V/B/3

Hence

N

a
4

N

<



Formula

Gerolamo Cardano (1501-1576).

Tartaglia (1500-1557)

Ludovico Ferrari (1522-1565): fourth order equation.

S+ bP+ex+d=0

x=y+k
2

First reduction: find the value of k to make 0 the coefficient of y<.

BabPtex+d=0
(v + kP +by+kP+cly+k)+d=0

y3 4+ 3ky? +3k%y + k3 + by? 4+ 2bky + bk® + cy + ck +d =0

y3 + (3k+ b)y® + (3k*> +2bk + )y + k3 + bk? + ck +d =0



Then b
3k+b=0 k=——

3
2 b b2
3k2—|—2bk+c:36—2?+c:—?+c
* B> b 20 b
K4+ bk>+ck+d=—2+——c-+d= c-+d

27 9 3 27 3



We substitute

x=y—b/3
into the equation
b? 2b3 b
3
_ - —c—+d=
y> =+ ( 3+c)y+ 7 3T 0
p=—-b*/3+c

q=2b%/27 — bc/3+d

Hence

Y 4+py+q=0



Second reduction: try to find y as the sum of the two unknown u
and v.
y=u+v

Substituting inside the equation
v py+q = (utv) +p(utv)+g = +v +(Buv+p)(utv)+g =0

Then
w4 vd = —q
v = —p3/27
We have the sum and the product of u3 and v3: we may construct

the second order equation:
Recall z2- sum z+ product =0

224+ qz—p3/271=0



—qEt+/q*+4p%/27T _ ¢ ¢, P _ g
= IR B A R
1.2 2 s E\ Tt VA

Assume
A >0,

then we get a real solution

y =vVz1+ V2.



To find the other solutions in the case
A >0,

we recall that the cube roots of 1

A cube root of a number x is a number y such that y3 = x. All
nonzero real numbers, have exactly one real cube root and a pair
of complex conjugate cube roots. For example, the real cube root
of 8, denoted /X, is 2, because 23 = 8, while the other cube roots
of 8 are =14 iv/3 and —1 — iV/3.



Roots

e

. 1
N, w= VO(_E -

<l

1
vVi= VO(_E +

S|

ol

Vo =



Then, recalling

uivi € R
up +vo = \3/—Z+\/E+\3/—g—\/5
1 V3. 1 V3, 1 V3 ,
up+ve = UO(—§+7I)+VO(—§—7’) = —(UO‘FVO)E‘FT(UO—VO)/

1 V3, 1, V3. 1 V3 .
ux+vy = Uo(—§—7l)+vo(—§+71) = —(Uo—i-Vo)E—T(Uo—Vo)l



Function
fxX)=x3+bx*+cx+d

lim x3+bx®>+cx+d= 400

X——+00

lim x>+ bx>+cx+d=—

X——00
Three real roots: A < 0.
Example
2} —x=0 x(x—-1)(x+1)=0

Recall y3+py +q=0 then p=—-1, g=0

2 3
q° P 1
A="11+5 —_
PR TR T

y=u+v, BB+ =0 B3=1/27

1

2 .
zc4+1/27T=0 z=+——i
/ 27



To find the solutions in the case
A <0,

we recall that the cube roots of i and —i

V3 i V3 i
2Ty T2 T
Vi i VB






Linear Regression

Relationship between two variables
by fitting a linear equation to observed data. Given n points n > 2
of R? xj # x; find the line minimizing the error

n

F(ao, al) = Z(alXj + ap — yJ)2 =
j=1

n n n n n
alD 5t nag ) yfH2amy - 2a0) v —2a)
Jj=1 Jj=1 Jj=1 Jj=1 Jj=1



Linear regression: model the relationship between two variables by
fitting a linear equation to observed data.
Function of two variable ag, and a;.

{830—221 (aixi+a0—y)=0

8L =257 1 xj(axj+a0—y) =0



We write

aon + ai ( > xj) = > =1Yi
a0 (Y71 %) +a( Xy x7) = 1 Xy



D— n” Egzl X12
Zj:l Xj Zj:l Xj



Exercise
Xj #x; withi #ji,j=1,...,n then

n

n
(ZXJ)2 < anf, neN;n>?2

Jj=1 Jj=1



The inequality is true per n = 2. Assuming the inequality true at n
step we need to show

n+1 n+1

(3-%)" <+ 3%
Jj=1 Jj=1
n+1

Z ZXJ + x,,+1

j=1

n

(D059)" + X1+ 2xes1 > <
=1 j=1



n
n E :X2 2 En :
j + X +
Jj=1 ne B v
j=1

n
(n—l—l)g xf—i—nx,% +x2 +. E 24 E
= +1T 17 (n+1 )
n+1 X7 42X,
n+1 Xj
G =

n+1

(n+1
)Zx —Z Xn+1)2<(n+1)§ 2
X7
=

j=1



Solution.

det(D) # 0

In this case the solution is

2

n
‘ j 1Y ijlxj
DXV DX

‘ ZJ 1% Z}lzle

’ Zf:lyj
n
DI Xi D1 X

’ Zf:lxé
n
Zj 1% Zj:lxj



The Hessian matrix is

2n 230 1 x
H(ag, a1) = J=1 J)
(0 1) <2ZJ 1% 22] 1

det(D) > 0. 2n > 0 minimum point.



Exercise

Find an example and apply the method: find a table to compute
the price of an intermediate stop of the bus once we fixed the
prices in preliminary stops by computing ag and a1 .

Exercise
Function of three variables ag, a1, a».

n

F(ao, at, @) = Y _(a2x? + a1x; + a0 — ;)
j=1

In particular case x; = i discuss the problem to find solution.



N N N
,\/IV ZI,'V:1 Xi Z,N:1 Xi2 ao Z;V,'zl Yi
Z/il:l Xi 29\1:1 Xi2 29\71 Xi3 a | = Z/V:l XiYi
2
>ic1 Xi2 Die1 Xi3 die1 X;L 92 D i1 X Yi



A=

2.
2

N
N .
2
i=1%j

2

EN

2

N .
j=1Xi
2
=1 Xi

3
i=1%j



Study the determinant of A in the case

xi=1i, i=1,...N

N 2 N 3
Doimi XD Dim1 X _

|Al = NN N
Zi:1xi3 Zi:1x4
N N N 3
ZX" ZA/ZIX; Z;\I:].Xl;l +
1 Dlim1 X im1 X
N

N N
. Zli\l::l Xi ZIIV:]. x?
Y X i X




_|_

3
i

N
D%
i=

2
i

N
|A| = 2ZX,'ZX-

N

i



> If

X,':i,

then

N
> i=IN(1+N)
: 2
N 1
Y iP= SN+ N)(2N +1)
N 1
d = ZN2(1 + N)?
Z i* = 7/v 14 N)(2N + 1)(—1 4 3N + 3N?)
=1

1
Al = mN3(—4 + N?)(—1 + N?)2



Inf-Sup Convolution: examples

Given a function f : RN — R, f € C(RN) the Inf Convolution of f
denoted by f. and the Sup Convolution of f denoted by 7€, with
e>0

_ 2
0= int, (70 + 5320 )
and
N O s
0 = sup (70 - 00 ) (©

We discuss the definition of inf-convolution finding f. in three
examples.



First example. We consider
F(x) = IXII> =>¢ + -+ xi.
f € C3(RV).

The function assumes a minimum point at x = 0. Next, we
compute the inf-convolution.

(x) = inf [Zw Z(Xk_yk .

y€ERN

m



Fix x. We set
1N
Fely) =D v+ 5> (o= yi)?

To find minimum point we set

OFc
dy;

1 .
':2yj—g(xj—yj):0. Jj=1,...



Hence
Yj
Substituting we have

N

k=1

1

T 2410

1

2¢

2 —
>+26

=[(X g

(2e+1

Rt

(2¢ +1)2

(2¢ + 1)



In conclusion




Second example.
Consider

f(x) = |Ix]| = /¥ +...x3-

f € C(RN). It does not admit first partial derivatives at x = 0.
We compute

We first consider
| 2
Ixl <,



We have

ly = X[ = (y1 =a)* + -+ (yw —xw)* = |y [I> + x> = 2x -y
Fix x such that ||x|| < e

N

N 1
2 1 1 2
0= (Xo02)" + 5 Yo = = Iyl 5l = =
k=1

k=1
Iyl + 52 (HyH +xl? = 2x-y) >

2 2
X
[ H) lyA™ il

2
—2 1-
Iyl =+, (IIyH 1A =20yl = llyli( e T o



Hence if ||x|| <'e,

L s 1P
“ly — > 2h
Iyl + 5 lly = 1P = 21

The value of F. in y =0 gives

1 N
FG(O) = Z legv
k=1

then 0 is a local minimum.



If ||x]] < e then

e>0

x> e,



Next, assume y # 0, we compute gradient

1
Yk C(xe—yk)  Vk=1...N.

Iyl e

1
Y (e —y)=0 Vk=1...N.

Iyl e



Making the square

2)//3 2
€ W:(Xk_)’k)7

and taking the sum on k

2_ 2
[Ix = ylI” = .



Also from

1
Y e —y)=0 Yk=1...N.

iyl e
vi(lyl +€) =llyllx  Vk=1...N.

Making the square and taking the sum on k

2 2 2
Iy Pyl + €)* =y l%[1x*.



Hence
Iyl = [IxIl — €,

And from the previous computations
2
Ix = y|I* = ¢

Iyl = 1lx1l =€,



Substituting the value of y,

1
fo(x) = x|l — e+ 5-€.

2¢
In conclusion ,
f(X)_{”;'e' x| <€
: =
Ix =5 lxlI>e

Exercise
Make a graph in 1 — d



Third example
We consider a discontinuous function.

f(x):{_l x<0

1 x>0



We compute

0 = o (1 + B0

yeR 2¢



£.(x) = min [ inf <f(y) + ’X;y’z> inf (f(y) + \><;€yz>]

y<0 € y>0

T x =yl . x = yI?
o= (-1 52 o2







x? x? x?
in|( -1+ )1 =—1+ 5 —14+ 5 <
min [( L+ 26)’ ] T2 TS

2
—1+)2<—§1 — x?<4e — |x| <2\
€



x<0
0<x<26e
x> 24/e



Convex functions and Jensen’s Discrete inequality
Convex Set

Definition

Q c RN is a convex set if for any x and y € Q,

x4+ (1—=XNyeQ  forany A €[0,1].

If x,y € Q then [x,y] € Q: any two points, the set contains the
whole line segment that joins them
2-d: B,(a) is a convex set.



N-d: B.(a):={x € RN : ||x—a|| < r} is a convex set.
Indeed x, y € By(a) then if A € [0, 1] we have

[Ax+ (1 =Xy —al| = [[A(x —a) + (1 = A)(y — a)] <
AM(x=a)[+ (=N lly —a)| <Ar+ (1 =A)r=r
Annulus is an example of non convex set.

Exercise
Prove that the intersection of two convex sets is a convex set



» p # 0. Closed convex sets are convex sets that contain all
their limit points. Iperplane (closed set)

H={xeRV:p'x=a},

> p#0.
Halfspace (closed set)

Hy ={x e RV :pTx > al,

H ={xeR":p'x<a},



The convex hull co(2) is the intersection of all convex sets
containing a given subset of a Euclidean space : it is the smallest
convex set containing Q. An equivalent formulation, co() is the
set of all convex combinations of points in the subset.



Convex Functions

Definition

Let C be an open convex set. f : C — R is convex if

fAx+(1=Ny) < M(x)+(1-=Nf(y) Vx,ye C, Xe€]0,1].
(7)

Definition

f is a strictly convex function if in (8) we have strict inequality for
x #yand A € (0,1).

Definition

f is a concave function if —f is convex

FOX + (1= A)y) > M(x) + (1= Nf(y) ¥x,y € C, Aeo,1].



In 1-d an affine function is a function composed of a linear
function plus a constant and its graph is a straight line. Affine
function in RN are a”x + ¢, they are convex and concave, an
example of convex function is f(x) = ||x||, an example of strictly
convex function is f(x) = ||x||°.

The function f : R — R

Ix[?, x>0,

f(x) =
9 |x| x <0

is convex in R, not strictly convex in R.



Let x > 0. The log function is a concave function in R.. Given
p>1 p€R and g such that

1 1

-+ -=1

P q
From the concavity follow Young's inequality: Given a > 0 and
b>0, and p > 1, g such that%+%:1. we have

aP b9

ab< — + —,

p q
-1 _1_1 — 3P — pa
Indeed)\—p 1 ;=g X=a y=>b

1 1 1 1
log(=aP + =b7) > = log aP + = log b9 = log a + log b = log(ab)
p- g p q

The inequality follows passing to exp.



Jensen's Discrete Inequality

Theorem

Let f : C — R be a convex function on a convex set C. Given k
points with k > 2

X1,%0,...,xx € C

we have

and



Let k =2 then 3 + 22 € C. It follows by the definition of set
convexity. Also by the assumption of the convexity of f.

P2 +22) < S (F(a) + )

We assume the induction assumption at step k, this is

k k
ka, € C and f(%Zx,) < %Zf(x,-)

i=1 i=1 i=1
Next, we need to show that
1 k+1 1 k+1 1 k+1
m ZX,‘ € C and f(m ZX,’) < m ' f(X,‘)
i=1 i=1 i=1
We set
k k 1
= — 1-A=1-——-=——
k+1 A k+1 k+1’

then



(by the convexity of f)

-
—
x| =

k
D xi) + (1= N (xer1) <
i=1

(by the induction assumption at step k)



k
)\% Z} F(xi) 4+ (1 = N f(xep1) =

k k+1



The geometric mean is a type of average: while the arithmetic
mean adds items, the geometric mean multiplies items. We can
get the following inequality for positive numbers y;.

1k o YL TY2 T Yk

(yiyo---yk) p

Next, we obtain the inequality by the previous result: exp is a
convex function in R, then

k k
exp (; Zx,- Ez exp(x;).
i=1 i=1

=



We consider

exp(;le):exp(%+%+XT(k):eXp%eXpX?

Set

yi=e",
we get the well-known inequality between arithmetic mean and
geometric mean:

< YI+}/2"‘+YI<.

(y2- - ye)Vk p



We show a generalization of the previous theorem

Theorem
Let f : C — R be a convex function on a convex set C- Given k
points with k > 2

X1,X0,...,xk € C,

k
Mg, A ER, A0, i=1, 0k Y A=1
i=1
we have

k
Z Aixi € C
i=1

and
k

k
f(Z)\,'X,') < Z)\;f(x,-)

i=1



By induction. The result is true for k = 2. Let

k+1
AL, A2, o A1 €ER) A >0, 7i=1,...,k+1 Z)\;Zl
i=1



We assume Agy1 < 1.

k+1 k

Z AiXi = Z AiXi + Akp1Xky1 =
i—1 i—1

k

Ai
(1= A1) D T % T A1 Xie
i=1 k1



We set
bi=——"—16,>0 9; =1
1— Akt Z

Using the induction hypothesis at step k, we get

k+1

Z Aixi € C.
i=1

Moreover

k+1 k

FO - xixi) = FO S Nixi + Aksrxern) =
i—1 i—1

k

Ai
(1= Aig1) Z mxi + Ak1Xk+1)
i=1

(by the convexity of f)



k

< (1= )OO

i=1

Ai
— X)) + A1 f (Xeg1
T s ) + At f (Xit1)
(by the induction assumption at step k)

k

(1= Ak41) )+
,Z; 1- )\k+1

k+1
Mepaf (i) = D Aif(x)



Application

Ao, A ER, A20,i=1,...k Y N=1

k k
exp (Z Aixj) < Z Ai exp(x;)
i=1 i=1

Set y; = €%, then we get the generalized inequality between
arithmetic mean and geometric mean:

)M (r2)2 - (i)™ < Aaya + Xoyo -+ ek



Legendre-Fenchel Transform
Let f : RV — R. The Legendre-Fenchel Transform of f

f*(x) = sup [x-y —f(y)] x € RN
yERN



Letp>1,andqsuchthat%+l:1

q
1
f(x)=—|x||P
(x) pH |
IxIP = (o + 53 + -+ x3)*
Then )
fr(x) = = IIx]|.

q



We compute the gradient of

1
F(y)=X~y—f(y)=X~y—EHyH”

oF -1 Y -2

S =X ylIPT =0 = x5 = ly[IPy =0

oy [yl ’ ’
Then, setting § such that x; — [|§]|P 2§ =0



1
_ N
191~ = lIx|l hence |I§] = |Ix||>.

LP—2 o
And, since x; — [|7]|

yj=0

_p—c .
yi=xi|x|| ~* j=1,...,N



Substituting the value
* ~ 1. p
F00 =23 = S I9IP =
J

_p=2 1 _p_ 5 _p=2 1 _p_
D Xl e = = I[P = ] fIxl| e = = [l e =
F p P

- 1 - 1
Ix]|7°1 = = |Ix[|7T = 2 e



Definition

Let f: RV — R. A positively homogeneous function of degree p is
one with multiplicative scaling behavior: if all its arguments are
multiplied by a factor A > 0, then its value is multiplied by power

p of this factor
f(Ax) = A\Pf(x)



Proposition

f: RN — R. Assume that f is a positively homogeneous function
of degree p > 1. Then f* is positively homogeneous function of
degree q, with p and q such that 1/p+1/q = 1.



Proof.
Let A >0

F*(x) = sup [Ax-y —f(y)] = sup [X7"179x .y — f(y)] =
y€ERN y€eRN

A sup [x-()\lfq)y—)\*qf(y)] = A9 sup [X' (/\1qu) - f()‘ig)’)]
yERN y€ERN
We observe
g =q— ]_, —g =1- q
P p

we set &€ = A\179y we obtain

F(Ax) = X sup [x-& = F(§)] = AF(x)
EERN

O



Convex Functions and smoothness
Definition
Q c RN is a convex set if for any x and y € Q,

AX+(1=XyeQ  forany X €[0,1].

Definition

Let C be an open convex set. f : C — R is convex if

fAx+(1=Ny) < M(x)+ (1 -=Nf(y) Vx,ye C, Xe€][0,1].
(8)

Definition

f is a strictly convex function if in (8) we have strict inequality for
x #yand A € (0,1).



Definition
f is a concave function if —f is convex

F(Ax 4+ (1= N)y) > M(x)+ (1= Nf(y) ¥x,yeC, xelo,1].
Theorem

Let C be an open, convex subset of RN and f : C — R, assume
f € C(C). Then f is convex in C <=

f(x) > f(xo0) + Df(x0) - (x — x0) ¥x,x0 € C.

f € C(C), f concave in C <
f(x) < f(xo) + Df(x0) - (x — x0) Vx,x0 € C



f € C1(C) and convex in the set C =
f(x) > f(x0) + Df(x0) - (x — x0) Vx,xp € C.
By the assumption of convexity
f(Ax+ (1= XN)xo) = f(x0 + AM(x — x0)) < Af(x) 4+ (1 — N)f(x0).
This means
f(xo+ AMx —xp)) — f(x0) < Af(x) — M (x0),

A>0

f(xo + A(x — x0)) — f(x0) < A (x) — M (x0)
A - A



Then sending A — 0T we get the result:
f(x0) + Df(x0) - (x — x0) < f(x).

Next we assume f(x) > f(xo) + Df (x0) - (x — x0) Vx,x0 € C. We
show that f is convex
Change xp with xo + A(x — x0) in f(x) > f(x0) + Df (x0) - (x — xo).

f(x) > f(xo+A(x—x0))+ Df (xo0+A(x—x0)) - (x — (x0+ A(x—x0)))

f(x) > f(xo+Ax—xp))+ Df (xo + A(x —x0)) - (x — x0 — A(x — xp))



Then
f(x) > f(xo+ Ax—x0)) + (L = A)Df(x0 + AM(x — x0)) - (x — x0)

A (x) > M (x0+A(x—x0))+A(1=A)Df (x0+A(x—x0))-(x—x0) (9)



We go back to
f(x) > f(xo) + Df(x0) - (x — x0) ¥x,xp € C.

Change x with xp and change xp with xp + A(x — xp) in the
inequality above.

f(x0) > f(x0 + A(x — x0)) — ADf(x0 + AM(x — x0)) - (x — x0)



This means
(I-X)f(x0) > (1=A)f(x0+A(x—x0)) —(1=A)ADf (xo+A(x—x0))-(x—x0)
(10)
Adding (9) and (10)
M (x)+ (1= N)f(x0) > f(x0 + Mx — x0)).

This show the convexity of f.



Remark

We recall that Df (xp) = 0 is always a necessary condition for local
optimality in an unconstrained problem. The previous theorem
states that for convex problems, Df(xy) = 0 is not only necessary,
but also sufficient for local and global optimality (minimization
problem): from

f(x) > f(xo) + Df(x0) - (x — x0) ¥x,xp € C.

we obtain
f(x) > f(xo)



Strict convexity and uniqueness of optimal solutions. Let f a
strictly convex function in a convex set C. Assume that the
optimization problem

minyec f(x)

f strictly convex

admits a solution x € C, then it is unique.



Let x and y two points such that

> f( )< f(z) Vze C
fly) <f(z) Vze C
f(x) =1f(y)

Fix z = %X-i- 5y, then

1

f(z) = f(%x-i— Ey) < %f(x) + %f(y) =

A contradiction.

f(x)



Remark
Observe that the min problem

min e*
xeR

does not admit solution.

Theorem

Let C be an open, convex subset of RN and f: C — R, assume
f € C3(C). Then f is convex in C <= Vx € C D?f(x) is
positive semidefinite (f is concave in C <= D?f(x) is negative
semidefinite)



Convexity is equivalent to convexity along all lines. f: C — R.
Assume f € C?(C), and f convex.
Define, forx € C, y e RN : x4+ ay € C

g(a) = f(x + ay)
g'(a)=Df(x+ay)-y

g'(a) = D*f(x+ay)y -y

Next observe that g, as a function of «, is a convex function.



Indeed for A € [0, 1]
g(Aar + (1 = Naz) = f(x + (A1 + (1 = Nazg)y) =

FAMx +a1y) + (L = A)(x + aay) <
AM(x +ary) + (1 = Nf(x + azy) = Ag(a1) + (1 — A)g(a2)



For the convexity of gin 1 —d
g"(a) z 0.

In particular
g"(0) = D*f(x)y -y > 0.

The other hand follows by Taylor expansion with Lagrange
remainder, there exists  such that

F(x) = Flx0) + DF(x0) - (x — x0) + 2 D*F(C)x — 50) - (x — 0)



Hence
f(x) > f(x0) + Df(x0) - (x — x0)



Convexity of quadratic form.
From the previous result. Given f(x) = x" Ax with x € RV,
A = (a;jj) with A symmetric: a;j = aj ;,then

D?f(x) = 2A

> f(x) = xT Ax is convex in RN <= A is positive semidefinite.
» f(x) = xT Ax is concave in RN <= A is negative
semidefinite.



Example
A symmetric of order n, b € RN ceR.

f(x)=Ax-x+b-x+c

We have

f convex <= A is positive semidefinite.
and

A positive definite = f strictly convex



Exercise

X4
f(x,y)zﬁ x>0, y>0

It is strictly convex inx >0, y > 07

3 2
f(x,y) = 4% fu(x,y) = 12

4 4

X X
hly) = =205 holoy) =675 fixlxy) = =87

6 6

detH = 725 — 642 > 0, fu(x,y) = 1275 >0
y y y



The graph of a convex function can have corners, so convex
functions need not to be C, however finite-valued convex
functions are continuous.

It is often useful to allow convex function to take the value 4oc0.
Show an example of convex function not finite-valued.



f*(x) = sup [x-y —f(y)] x € RN
yERN

Assume that f is convex and f satisfies a super linear growth
condition, that is

f‘
W _
llyll=-+co ||yl
then f* is convex and
f*
) _

| e
Ix||=+oo || x]]



» f* is convex.

Fr(Ax+ (1= A)R) = sup [(Ax+(1—=NR) -y —f(y)] =

y€RN
up [(Ax-y = fy)+ @ =N (X-y —f(y))]
< sup [(A(x-y = F(y)]+ sup [(1=A)(% -y —F(y))]
yERN yERN

=M (x)+ (1 = AN)Ff*(X)



» The Fenchel Young inequality holds

x-y <F(x)+f(y), V¥x,y RN
Hence fix x # 0, and for any M > 0, take y = M=

Il

X X
*(x) > Mx — — f(M—
o~ M)
f*(x) > m
9 x| lixli<m
() > M — — max
x| x| 1Ixli<m
f*
(X) = 400

m
lIxll=+o0 ||X|



Take

Compute

f*(x):}s/gﬂg [x-y—f(y)} x€R

f*(x) = sup [x‘y—|y\] xeR
yeR

Fx) = {o x| <1

+o00 otherwise



From Young inequality show Holder inequality in integral version
(I/p+1/q=1).

b b % b %
/ rfgrdxs( / If\”dX> ( / rg\qu)
a a a

By Young inequality:

[LACIIIN":{C3] N WALICIANENR WA {CIAN
Iflly llgllq <p<Hpr> +q<Hqu>

1 15 a
[ v < 118, 182 _
[#Tallella Jo plIFIE " allglld




Rule north-west determinants.

Definition
A symmetric matrix of order n: the north-west submatrices are

a a
Al_(all),...A2_< 1 12)

d21 a2

411 412 413
A3 = < d21 d2 a3 > ........... An:A

d31 432 433



The following result holds true

Theorem
A symmetric matrix of order n.

> A positive definite <>
detAy >0, Vk=1,...,n.
> A negative definite <—
(—1)*detA, >0, Vk=1,...,n

(det Ay < 0, detAy >0, det A3 <O0...)



Exercise

-3 1 2
A=[1 -9 -5
2 -5 -8
Compute
|A1| = -3
|A2| = 26
|As| = —117

A is negative definite.



Exercise

10 -1 -3
A=|-1 1 1
-3 1 4
Compute
|A1] = 10
|A2| =9
|As| =23

A is positive definite.



Exercise
Given
f(x1,x0) = 4x¢ + 253 + 2V2x1%0

the associated matrix is

Find the eigenvalues of A.

A—)\I:(4_)‘ ﬁ)

V22—
A= M| =X —6\A+6=0
A2=3+V3

A is positive definite.



Penalty and barrier functions

Penalty Method

Problem: min f under the constraint g(x) < 0.

Consider the constraint g(x) < 0. The idea of penalty is to have



This can be achieved using the operation

max(0, g(x))

which returns the maximum of the two values. We can make the
penalty more regular by using

(max{g(x1, %2, ..., xn),0})>.

This is the quadratic penalty function.
In general

(max{g(Xla)Q’ s 7XN)70})p p > 1

> p =1 linear penalty function: this function may not be
differen-tiable at points where g(x) = 0.

» p = 2. This is the most common penalty function.



Given a function g*(x1,...,xn) = max{g(x1, x2, ..., xn),0} with
g € C! then ¢(x) = (max{g(x),0})? is C! and

2g(x)Dg(x)  if g(x) >0

Dolx) = {o if g(x) < 0

Hence
Do(x) = 2g™ (x) Dg(x).



Penalty method

Penalty method replaces a constrained optimization problem by an
unconstrained problems whose solutions ideally converge to the
solution of the original constrained problem. First we have
converted the constraints into penalty functions, then we add all
the penalty functions on to the original objective function and
minimize from there: minimize

Filx) = F(x) + 5 (max{g(x), 0})°

We multiply the quadratic penalty function by g The factor k >0
controls how severe the penalty is for violating the constraint.



Solve the minimum problem under the constraint g <0

min f(x1, x2) = ||x||? x = (x1, %) € R?
gx)=x1+x—-2<0



We consider

X1+ xo — 2 x1+x—2>0
0 X1+ x0 <2

g (x,x) = { (11)



Introduce an artificial penalty for violating the constraint: we are
trying to minimize f hence we add value when the constraint is

violated.

Fk(X):f(X)+g(g+(X))2 k=12,

k
Fi(x) = x12 + X22 + E(max((xl + xp — 2), 0))2



Making the gradient

{ G = 2x1 + k(max((x1 + x2 — 2),0))

0
T = 22+ k(max((x1 +x — 2),0)) =0



X2 = X1
—k(xg — 1) x1—1>0
0 x1—1<0
xp = —kmax(xx —1,0) k=1,2,...

x1 = —kmax(x; —1,0) = {



» Assume x31 —1 >0, xp — 1> 0 then (1 4+ k)x1 = k
X1 = Xp = ﬁkk (not admissible since we assume x; — 1 > 0,
x—1>0 )
» Assume x1 — 1 <0, x —1<0thenxg=x =0
The solution is
x1=x=0



Solve the minimum problem under the constraint g <0

min f(Xl,Xg) = (Xl — 1)2 + (X2 — 1)2
gx)=x1+x—-2<0

Fulx) = F(x) + 5 (87 ()

Fr(x) = (x1 —1)? 4 (x2 — 1)2 + g(max((xl + X0 — 2), 0))2

k=1,2,...



OF _
Ox1

OF. _
Dxy

2(x1 — 1) + k(max((x1 + x — 2),0))

2(x2 — 1) + k(max((x1 + x> — 2),0))



X2 = X1
—k(xy — 1) x1—1>0
0 x1—1<0
xp—1=—kmax(xx —1,0) k=1,2,...

X1—1:—kmax(x1—1,0):{



» Assume x; —1 >0, xo —1 > 0 then x; = xo = 1 (not possible
since we assume x; —1 >0, xo — 1 > 0)

> Assume x1 — 1 <0, xp —1 <0 then xy = x = 1.

The solution is
X1 = Xo = 1



Solve the minimum problem under the constraint g <0

min f(x1, x2) = (x1 — 1)2 + (x2 — 2)2
g(X):X1+X2—2§0

Fulx) = F(x) + 5(8* ()

Fie(x) = (xa — 1)2+ (0 — 2)% + g(max((xl +x0—2),0))



OF _
Ox1

OF. _
Dxy

2(x1 — 1) + k(max((x1 + x — 2),0))

2(x2 — 2) + k(max((x1 +x2 — 2),0))



xp—2=x1—1

k
x1—1= ~3 max(2x; — 1,0)

k
xXp—2= —3 max(2x; — 3,0)

xi—1+52q-1)=0 (1+kpa=1+%

144 35 +2
Tk 2T Tkt
k — +o00
1 3
X1—§X2:§



More generally, f : RV — R penalty method for miny f with
K:gi(x)<0, i=1,...Mis

Set
P(x) = Z max{0, gi(x)}?

i=1,..,M

and minimize

min[f(x) + gP(x) x€R" k eN]



Barrier functions.

In a constrained optimization a barrier function is a continuous
function whose value on a point increases to infinity as the point
approaches the boundary of the feasible region of an optimization
problem. They are used to replace inequality constraints by a
penalizing term in the objective function that is easier to handle.
Assumption: The set of strictly feasible points,

{x:gi(x) <0,i =1,...m} is nonempty.

M
$(x) = _ log(—gi(x))
i=1

M

1
Vo(x) =)  ——V(gi(x))
250"



We consider
min £(x) + ) g x)<0(x)
+oo  gi(x) >0
gi(x) —

0 gi(x) <0

and the approximation by adding the log barrier function

1M
Fo(x) = f(x) = 5> log(—&i(x))
i=1

with 6 a positive large number.



The idea in a barrier method is to avoid that points approach the
boundary of the feasible region.



Next, we consider the minimization problem

min[f(x) — fZIOg —gi(x))],

gilx)<0, i=1,...M

whose stationary condition is

OV (x V(gi(x)) =0,

1

with condition
gi(x) <0, i=1,...M

c € R different from 0. We consider the minimization problem
m&n(cx + cy),

x+y<1lx>0y2>0.



We have M =3
gi(x,y)=x+y—-1<0

g2(X’y) = —X S 0
g(x,y)=-y <0

The domain K is described by the constraints x +y <1, x > 0,
y > 0.



This is the feasible set.

f(x,y) = cx+ oy
We have f(0,0) =0 f(0,1)=c f(1,0)=c f(x,y)=cif
x+y=1
If ¢ > 0 £(0,0) = 0.
If c <0 f(x,y) =cwithx+y=1.



c € R".

T
min[c’ x — gzlog(—gf(x))L
i=1

with g; linear functions.
Fix ¢ € R. We consider the minimization problem

mKln(cx+ cy),
and its approximation, 8 > 0
. 1
min[(ex + cy) — 5 (log(—x — y + 1) + log(x) + log(y)),

x+y<1l x>0 y>0.

Folx,y) = (ox + ) — 5 (log(—x — y + 1) +log(x) + log(y))



Discuss the approximate problem.

Folx,y) = (ox + ) — 5 (log(—x — y + 1) +log(x) + log(y))

Making the gradient

1 1
0c— ————=0
x+y—1 x

1 1
fc— ———=0.
x+y—-1 'y

fex(x+y—1)—x—x—y+1=0
Ocy(x+y—-1)—y—x—y+1=0



Hence
fcx® — (0c(l—y) +2)x +1—y =0,
Ocy? — (fc(l —x) +2)y +1—x =0.
Fix
fc=t]|

Recall that 0 is a positive large number

2 1-—
@ ((L=y)+ Dx+ = =0,

1—x

(=R + )y



First we consider

2 4
A=(1-y)+P -4 =0-y+ 5

VA =y/(1-y 11—NM1+



For x small

1
\/].+X%].+§X
4 2
1 ~1
ey T ey
1 2
xi2 5l -y)+ 5 1=y



Finally we get

X+y= —i—a—lc c<0 0 large.
X =y R~ 5 c>0 0 large.



Go back to Lagrange multiplier method.

The problem is the following Given f : RN — R, h: RN — RP, find

min{f(x): x € RNs.t.hj(x) =0,i=1,...,P} (12)



Fritz-John Necessary Conditions:

Theorem

Let | an open subset of RN, f: 1 - R, h: Il — RP, functions

€ C(1) and xo € I. If there exists an open neighborhood U of an
admissible point xy of RN such that

f(x) < f(x) Vx e UN{xel: h(x) =0}
then there exist Ao and pn = (p1, ..., up) such that

MoI(x0) + S0y g () =0, i=1,...,N
(>‘07/~L) 7é 07 h(XO) =0



For the proof:

1 , ke )
Filx) = F() + 5llx = xoll* + 5 Z(h;(x))

Take the minimum in a closed ball of centrum xg and radius §.
Then, say xx the sequence of minimum points,

P

Flu) = FO) 2k — ol + 5 S (i(x))? < Floxo) = £0)
i=1



Hence X '-3: hi(xx))? is bounded and
2 i=1

lim hi(x) =0 Vi=1,...P.

k—+o0

Using the Bolzano-Weierstrass theorem we may select a
subsequence such that

li =X hi(x) =0
Jm =% ()

Moreover )
F(R)+ 5% = xo|* < f(xo)

that is
X=X



For k large, by Fermat's theorem, recalling

P
1 2 k 2
Filx) = Fx) + 3 lx = ol + 2}1)(/7 x

OF) of
8)(:( (Xk) = 8X (Xk) —+ Xk/ Xo, Z kh Xk

i=1,...,N



ox; X;

OF of ah
k(xk) = a—Xi(Xk)—l-(Xk, Xo, Jz;kh Xk 3
i=1,...,N

Define LK, puk e RP

1

P 3
= (1 + Z(khj(xk))z) :
j=1

1 khi(x)
k __ k i
Ao = 1k Hi =~k
then
1 kh;(xxk
1O, 1) 12 = (k) v 3 (e )

Jj=1

(&) [+ Stz -

2 () =



By compactness the sequence

()‘167 :u’k)kGN

converges, up to a subsequence, for k — +o00 to (Ao, i), such that
[|(Xo, 12)|| = 1. Hence dividing by L¥, we get

P

of Xk7,' - XO,i 8h
Ag@x( )+7( T )++Z“JI'(3XJ.(X"):0

j=1
and recalling that, up to a subsequence, xx — xp, and
(A&, k) — (Mo, 1) we get the first order condition.



Maximizing Entropy

Probem: find the discrete probability distribution

{p17p27"'7pn}

with maximal information entropy.
In other words, we wish to maximize the Shannon entropy:

e(p1, P2, - - Pn) = ij log, pj-

(ignore the positivity constraints > 0: it will be satisfied
automatically



For this to be a probability distribution the sum of the probabilities
p; must equal 1, so our constraint is:

n
e(p1,p2,--.,pn) =Y _pj=1.
j=1

We use Lagrange multipliers to find the point of maximum entropy,
p*, across all discrete probability distributions p. We require that:

)
g A= 1)

p=p*



This gives a system of n equations:

a n n
o) ZPJ'ngpj + A ijfl
Pk = =

Pk=pP}



Carrying out the differentiation of these n equations, we get

1 .

This shows that all p; are equal . By using the constraint we find

1

*—7
Pk n

Hence, the uniform distribution is the distribution maximizes the
entropy.



Fluid Equilibria M. Levi SIAM News 2020

Water levels equalize in communicating vessels.

We have n different shaped containers connected with small tubes
at their bases with valves closed. We see that the level of water in
the container k is xx. Let ax(y) the cross sectional area of the
container k. The volume of the water within is

/0 A a(y)dy,

with potential energy given by

Xk
/0 ya(y)dy,

and total potential energy given by

* a(y)d
;/Oyyy



Now open the valves: the total potential energy settles to its least
value preserving the total volume (corresponding to equal levels).
From an optimization point of view we have to minimize

n Xk
F(xi, %2, ... xk) = Z/o ya(y)dy,
k=1

under the constraints

n

/Xk a(y)dy =V

k=170

L(x1,%2,...Xk) = kz::l/; ya(y)dy+k<k§::1/0Xk a(y)dy — V)

Carrying out the differentiation, we see that the Lagrange
multiplier A is (minus) the common water level.



Optimization techniques.

Optimization with constraints. Next we consider a generalization
for problem with unilateral constraints of the Lagrange Multipliers

Method.
The problem is the following Given f : RV — R and
g: RN - RM h:RN — RP find

0,i=1,...,M,
0,i=1,...,P}



» Linear programming: affine constraints and a linear objective
function. The goal of linear programming is to find the values
of the variables that maximize or minimize the objective
function.

» Non Linear programming. Non linear programming includes

» quadratic programming: objective function f is quadratic and
the constraints are affine functions,

P convex optimization: minimizing convex functions over convex
sets. Example of a convex optimization problem

1
f(x) = =xT Ax,

2
over RN convex set, with A a symmetric of order N definite

positive matrix.



The standard convex problemis f : | - R, f convex g : | — RM
g convex h: | — RP h affine

g= (g1, -..8m) h=(h,ha,... hp)

min f(x), under the constraints g(x) <0, h(x) = 0.
Observe that if g;j is convex then the set K; = {x : gi(x) <0} is a
convex set since x,y € K;, A € [0,1]

gi(Ax+ (1= N)y) < Agi(x) + (1 = Ngi(y) <0,

and
Ni=1,. . mKi

is convex.



Constraints: affine functions.

Consider the constraint gj(x) < 0 with g; linear function Take for
example the constraint domain K described x +y <1, x > 0,

y > 0.




Then we add a constraint x < 1/2

Add a new constraint such that the feasible set is not empty and
draw the feasible set



A closed half-space can be written as a linear inequality:

ajx1+axxo+ -+ anyxy < b

where N is the dimension of the space. We are interested to closed
convex sets regarded as the set of solutions to the system of linear
inequalities (these inequality can produce an unbounded set as
well):

Xy + axe +---+ ainxw < by

agix1 + axnxo +---+ awxy < b

apixt + apexe + -+ apnxn < by

where M is the number of half-spaces defining the set where

Ax < b

where A is an M x N matrix, x is an N x 1 column vector of
variables, and b is an M x 1 column vector of constants.



A polyhedron in RV is the intersection of a finite number of half
spaces.

It is often written as K = {Ax < b}, where A is an M x N matrix
of constants, x is an NV x 1 column vector of variables , b is an

M x 1 column vector of constants.



In the picture in the plane we have a bounded closed convex set: if
the objective function is linear the optima are not in the interior
region: the occur at the corners or vertices of the feasible polygonal
region. The optimum is not necessarily uniquely assumed: it is
possible that a set of optimal solutions cover an edge.



Consider the linear optimization problem

min ¢ x subject to x € K

with
K={xecRN:Ax < b}
If K describes a bounded set and x* is an optimal solution to the

problem, then x™ is either an extreme point (vertex) of K or lies on
a face F C K of optimal solutions.



Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions are first-order
necessary conditions for a solution to be optimal.

xo = argmin, f(x) such that g(x) <0, h(x) = 0 The Lagrangian
L:RN x Ri‘(’ x RP associated to the optimization problem

L(x, A\, p) = f(x Z Nigi(x) + Z pihi(x),

= ]_7 ’ i= 1,...,P

with A, € RY x RP.



A point (xp, A%, 10) is a KKT point if
L0\ 10 =0,i=1,....N
g(XO) Soa h(XO):O7 A? 207 I: 17"'7M7

)‘?gi(XO):Oa i:17"'7M7



We refer to \; as the Lagrange multiplier associated with the ith
inequality constraint gj(x) < 0; we refer to p as the Lagrange
multiplier associated with the i-th equality constraint h;(x) = 0.
The vectors A\ and p are called Lagrange multiplier vectors
associated with the problem or the dual variables.



Karush-Kuhn-Tucker conditions

min f(xi,x2) = (x1 — 1)% + (x2 — 2)?
gx)=x1+x—-2<0



v

Lagrangian
,C(Xl,XQ, )\) = (Xl — 1)2 + (X2 — 2)2 + )\(Xl + X0 — 2)

Stationary condition

oL 0 0

o ax (xg — 1) + (x — 2) )+ Aa—l(xl +x—2)=0
oL 0 5 0 B
o 8X —((a —1) + (2 —2) )+)\a—)(2(xl+X2—2) =0

Admissibility (feasible) condition
x1+x—2<0
Multiplier sign: non negativity of the multiplier
A>0
Complementary slackness condition

)\(Xl + X0 — 2) =0.



Find the solution. By the complementary slackness condition
/\(Xl + X2 — 2) =0,

we have that A\=0or xgy + xo —2 = 0.
If A =0 then E(Xl,Xz,O) = (X1 — 1)2 + (X2 — 2)2, and

DL(x1,x2,0) = (2(x1 — 1),2(x2 — 2)),

whose stationary point is (1,2). This is not an admissible point.



Let x{ + xo —2 =0 then x, = 2 — xq,
DL =2(xy — 1)+ A=0

DL =2(xp—2)+ A =0,

then xo =2 —x;and x1 —1=x — 2

X1=x, o== A=1



Fritz John Conditions

Fritz John (Berlin, 14 June 1910 -New Rochelle,10 February 1994)

Optimization with constraints.
The problem is the following Given f : RV — R and
g: RN - RM h:RN — RP find

M,
P

(14)



Necessary Conditions: Fritz John Theorem.

Theorem

Let | an opensubsetof]RN, f:l—>]R,g:l—>]RM, h:l— RP,
functions € C*(I) and xo € I. If there exists an open neighborhood
U of an admissible point xq of RN such that

f(xo0) < f(x) VxeUnN{xel: g(x)<0, h(x) =0}

then there exist \g, A = (A1,...,Am) and = (p1,. .., up) such
that

i)
/\Oaf(X0)+ZJ 1 JaX(X0)+Z 1NJax (x0)=0,i=1....N
/\,'g,'(Xo) = 0, | = 1,...,/\/’, ()\0,)\) Z 0, ()\0,)\,#) 75 0

g(x0) <0, h(x) =0
(15)



) Al P
Fi(x) = f(x) + §HX — x| + > (Z g (x)? + Z h,-(x)2>

i=1

Remark

Assume that f has a local minimum point in x = xg then
1 2
F(x) = F(x) + 5 lx = ol
has a local strict minimum point in x = Xxg.
]:(Xo) = f(Xo).

Locally, for x # xo

F(x) = £60+ 5lx—l? > F0) + 5 llx 0l > F(30) = F0)



By the definition of constrained minimum point and the continuity
of f,g and h we can consider 6 > 0 such that
x € B(xp,0)N{x € l: g(x) <0, h(x) =0}

f(x0) < f(x)

gi(x) <0  if gi(x) <0



Then we consider

P
Fi(x) = f(x) + *I!X—XoH +3 (Zg, Zh(X)2>

where g?(x)* = (max{gi(x),0})? is a C! function with gradient
2g;" (x) Dgi(x)-



By Weierstrass theorem, there exists xx minimum point of F in

B(xo, 9).
In particular we have

Fi(xk) < Fi(x0) = f(x0) (16)

(since gi(x0) < 0 and hi(x) = 0).



Moreover, by compactness, the sequence {xx }kenconverges up to
a subsequence to a point x* belonging to the set. We are going to

show that

x* = xg

First we show the admissibility of x*

gi(x)<0,i=1,..,M and hi(x")=0,i=1,...,P.| (17)




From (16)

M P

D& (k) D hi()? <

i=1 i=1

x| N

and by the continuity of g;, h; we have as k — oo
M
D gt (x4 hi(x)* <0
i=1 '

hence since

0 gi(x) <0
gi(x*)<0,i=1,...,M, and hj(x*) =

e
I
“I—‘

(700) = 50— 55— 0l?)

(18)



Moreover from (16), we have
1 2
F(xc) + 5l = ol < Fi(xi) < fx0)
and passing to the limit as k — oo
* 1 * 2
F(x') + 5% = ol < Flo)

From (18), x* € {x € I : g(x) <0, h(x) = 0} hence



It follows

1
F(x7) = F(x7) + S lIx" xolI?
Then
[x* = xo[|* =0
hence
x* = xg.

Since xx — xp, we have that as k is large enough xx € B(xp, d)
then, by Fermat's theorem, recalling

1 K (M P
Fi(x) = f(x) + E”X — x| + > (Z g (x)?+ Z hi(X)2)
i=1 i=1

where g?(x)* = (max{gi(x),0})? is a C! function with gradient
2g;" (x) Dgi(x) we get



OFk of ogj
% (xx) = 87x,-(xk) + (Xk,i — x0,i) + Z ng Xk)8 (xk)

j=1

(20)
Zkh xk) = (xx) = 0, i=1,...,N



Define Lk, \§ € R, Ak € RM, pk ¢ RP

)
Nl

M
Lk = 1+Z(kgj+(xk))2+Z(khj(xk))2 , o (21)

1 A ki (xx) k _ khi(xk)
Iz T i = Lk

A =



then




By compactness the sequence
(Aéa )‘ka ﬂk)kEN

converges, up to a subsequence, for k — +00 to (Mg, A, 1), such
that ||(Ao, A, 1)|| = 1. Hence dividing by L*, we get



of (Xk, Xo, og; P Oh;
/\éax( k) + —I—Z/\k L k)-l-z,ujka—xj_(x
1 J:]. 1

and recalling that, up to a subsequence, xx — xg, and

(A&, AR k) — (Mo, A, 1) we get the first condition in (15).

(23)



From (21) passing to the limit, since M AK >0, we get Mg, A > 0.
Lei i such that gj(xp) < 0, then gj(xx) < 0. We have
max{g;(xx),0} = 0 hence \X = 0. We conclude since if gi(xo) < 0,
we have

Aigi(x0) = 0.

Similarly for other i, hence we get \igi(xo) = 0 for any
i=1,..., M getting the condition in (15).



Karush-Kuhn-Tucker conditions

W. Karush, Minima of Functions of Several Variables with
Inequalities as Side Constraints - M.Sc. Dissertation, Dept. of
Mathematics, Univ. of Chicago, Chicago, lllinois, 1939.

Kuhn, H. W.; Tucker, A. W., Nonlinear programming -
Proceedings of 2nd Berkeley Symposium, Berkeley, University of
California Press, 1951, pp. 481-492.



Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions are first-order
necessary conditions for a solution to be optimal.

xo = argmin, f(x) such that g(x) <0, h(x) = 0 The Lagrangian
L:RN x Ri‘(’ x RP associated to the optimization problem

L(x, A\, p) = f(x Z Nigi(x) + Z pihi(x),

= ]_7 ’ i= 1,...,P

with A, € RY x RP.



A point (xp, A%, 10) is a KKT point if
ggumx%w):Qizl,”,N
g(x0) 0, h(xe) =0, X > 0, i = 1,..., M,

MNgi(x)=0,i=1,...,M,

Aj: the Lagrange multiplier associated with the ith inequality
constraint gj(x) < 0;

w: Lagrange multiplier associated with the i-th equality constraint
h,‘(X) =0.

The vectors A and p are called Lagrange multiplier vectors
associated with the problem or the dual variables.



Non negativity constraints We consider the following class of
problems

min{f(x) : x € RVsuch thatx; >0, i =1,..., N} (24)

(x>0 means x; >0i=1,...,N).



We obtain

Df(Xo)—)\ZO
x0>0,A>0 A =0

hence \; = %(Xo) and

of
dx;
of
Ix;

(x0) >0 if xo,i =0

(XO) =0 if Xp,i > 0



box constraints.
Consider the following class of problems

min{f(x) : x € RVsuch thata; < x; < b;, i = 1,..., N}
where a, b € RN with a; < b;. We consider the Lagrangian
L(x,\) = f(x)+ Ao(a — x) + A\i(x — b)
We obtain

Df(x0) — Ao+ A1 =0
a<xp<b
(a — Xo))\o = 0, (X() — b))\l = 0, ()\0,)\1) Z 0



We set
Ja:{j:XOJ:aj},Jb:{jZXO’J':bj}, JO:{j:aj<x0J<bj}
If j € J,, and X0, < bj, then /\1,j = 0. It follows

of

an(X()) = )\oJ > 0.

Similarly, if j € Jp, and xgj > aj then Mg ; = 0 and

of

aixj(xo) = _)\LJ S 0.

If j € Jo, then A\gj = A1; = 0 hence

of



The necessary conditions are

of .

E(XO) > 0 if X0,j = 4j
J

of .

a(Xg) < 0 if X0,j = bj
J

of

8X'(Xo) =0 if aj < Xxpj < bj.
J



Ao # 0: constraints qualification

Corollary

Under the same assumption of the Fritz John Theorem, we define
the set of active indices I*(xp) = {i € {1,..., M} : g(x0) = 0}
(active constraints) and we assume that the #(1*(xo) + P) vectors
{Dgi(x0), i € I"(x0)}, {Dhi(x0), i =1,..., P} are linearly
independent. Then there exists A = (A1,...,Anm) and
w=(u1,...,pp) such that

m 9 Oh; .
(Xo)—i—z )\Jaij(xo)—}—zj’-’:luja—)é(xo):o, i=1,....,N
)\,'g,'(Xo) = 0, I = ]., PN M,

g(Xo) < 0, h(Xg) == 0, A > 0
(25)



From Fritz John theorem we know that there exist Ag, A and g,
not all 0, such that the Fritz John conditions hold true. We wish
to show that A9 # 0. For sake of contradiction assume Ay = O,
then recalling that A\; = 0 if gi(xp) < 0, we get

> )

j€l*(x)

“H(x)=0 i=1,...,N.

By the linear independence of the vectors we get A =0 and = 0.
This is not possible. Then Ay # 0 and we may divide by Ag in the
first Fritz John condition and we obtain (25).



Convex Optimization and Slater's constraint qualification

The interior of a convex set may be empty. For example, line
segments in RY have no interior points when n > 2: the closed line
segment [0, 1] in the two-dimensional space R? has no interior
points, if we consider the line segment as a subset of a line in R,
then it has interior points and its interior is equal to the
corresponding open line segment |0, 1].

In RN: if C is given by the set of points (1 — A)x + Ay for

x,y € RV and X € [0,1] (a line-segment), then relint(C) is given
by the set of points(1 — A)x + Ay, with A € (0,1).

x €relint(C) < Vxe(C,Iy>0s.t. x+v(x—Xx) e C.

» From the theory on convex set: every nonempty convex of RV
set has a nonempty relative interior.



Slater condition: Convex case f : RV — R convex and g are
convex functions and h = Ax — b.

C =Ly dom(g;)

There exists x* € relint(C) such that
> gi(x*)<0,i=1,....M
> Ax* = b.



Jacobian Matrix.
Given f : | € RN — RM the jacobian matrix of the function f in x

is given by
oh o oh
8X1 aXN
ofi(x
Jf=1: (Jf)ij—a)((.)-
Ofm Ofm ’
8X1 aXN

If M = N, then f is a function from RN to itself and the Jacobian
matrix is a square matrix: we may compute its determinant, the

Jacobian determinant.



Sufficient Condition. Assume f and gj, i =1..., M C! and
convex functions and h(x) = Ax — b. Assume KKT conditions
hold true. Then xp solves the minimum constrained problem.



Indeed A > 0 for any x € {x € | : g(x) <0, h(x) =0},
f(x) > f(x) + \g(x) + wph(x).
By the assumption on h,

h(x) = h(x0) + Jh(x0)(x — x0)

By the assumption of convexity of g;

g(x) = g(x0) + Jg(x0)(x — x0)

Since A > 0 we have

h(x) = h(x0) + Jh(x0)(x — x0)



f(x) = f(x) + Ag(x) + nh(x) = f(x0) + Df (x0)(x — x0)
+Ag(x0) + Mg (x0)(x — x0) + ph(x0) + pIh(x0)(x — xo0)

> f(x0) + (DF(x0) + Jg(x0) T A + Jh(x0) 1) (x = x0) = £ (%)

Hence xg is a minimum point.



Duality.
Lagrange Dual Function

£(x, 0 1) = £(x) + Ag(x) + h(x),
For each pair (A, p) with A > 0, the Lagrange dual function

G(A, ) = inf L(x, A, i) = inf{f(x) + Ag(x) + ph(x)},

subject to A > 0. This problem is called the Lagrange dual
problem associated with the primal problem.



The Lagrange dual problem is a convex optimization problem,
since the objective to be maximized is concave and the constraint
is convex: indeed the dual function is the pointwise infimum of a
family of affine functions of (A, 1), hence it is concave.

If the Lagrangian L is unbounded below in the variable x, the dual
function takes on the value —co.



It gives us a lower bound on the optimal value p* of the primal
optimization problem.

p* = miny f(x) such that
gi(x)<0,i=1,....M;hi(x*)=0,i=1,...,P

Indeed assume that x* is a feasible point, this means

{gi(x*)<0,i=1,...,M; hi(x*)=0,i=1,...,P}



Then
Do N+ D uiki(x) <0
i=1,,M

i=1,....P

By the previous inequality
L(x* A, p) < F(x7)

Hence
G(A, p) < F(x7),

for any x* feasible point.



We have to solve the following problem

max G (A, p)
A

under the constraint A > 0 and (A, i) such that G(\, u) > —oco .

The term dual feasible for the dual problem stands to describe a
pair (A, i) subject to A > 0 and G(A, ) > —o0 .



We refer to (\*, u*) as dual optimal or optimal Lagrange
multipliers if they are optimal for the dual problem

The optimal value of the Lagrange dual problem, which we denote
d*, is, by definition, the best lower bound on p* that can be
obtained from the Lagrange dual function.

Generally the weak duality property hold

d* < p*



y=p—d
This is the optimal duality gap of the original problem. The
optimal duality gap is always nonnegative.
It is the gap between the optimal value of the primal problem and
the best (greatest) lower bound on it that can be obtained from
the Lagrange dual function.
The weak duality inequality holds when d* and p* are infinite.
Indeed if the primal problem is unbounded below, p* = —oc, then
d* = —o0, this means that the dual problem is infeasible.
Conversely, if the dual problem is unbounded above, so that
d* = 400, we have p* = +00, so that the primal problem is
infeasible.



Example.
Linear Programming |

{minc™x Ax=b, ;>0 i=1,...,N}
G\, 1) = inf L(x,\, p) = inf{c"x — Ax + uT (Ax — b))}
=inf{(c—=A+ATp)"x—bTp)}

subject to A > 0.



Since a linear function is bounded below only when it is identically
zero, we obtain

—bTp c—A+ATL=0

—00 otherwise

g()‘v /L) = {

IfAX>0and c— A+ ATu=0then —b" i is a lower bound for the
optimal solution of the primal optimization problem p*.



Thus we have a lower bound that depends on some parameters
AL
max—b'
c—A+ATu=0
A>0

or

max—b'

c+ATL>0



Linear Programming Il

{minc"x Ax<b,}



G(\ ) = inf L(x, ) = inf{cTx+ AT(Ax — b))}
= —bTA+inf{(c +ATA)Tx)}

subject to A > 0. Since a linear function is bounded below only
when it is identically zero, we obtain

—bT) ATA=0
g()\):{ c+

—0 otherwise



The dual variable ) is dual feasible if A\ >0and c+ ATA =0 If
A>0and c+ATXA=0then —b"\is a lower bound for the
optimal solution of the primal optimization problem p*.
Thus we have a lower bound that depends on some parameters X .
max —b'T A
c+ATA=0
A>0



A previous example: primal and dual problem

min f(x1, x2) = min[(xy — 1)2 + (2 — 2)2]
gx)=x1+x—-2<0



Lagrangian
[,(Xl,XQ, /\) = (Xl — ].)2 + (X2 — 2)2 + /\(X1 —+ X0 — 2)

Stationary condition

B~ g LTI Lo 2 AR (e —2) =0
0£ o 8 2 2 a —
87)(2 — 87X2((X1 1) + (X2 2) ) + )\87)(2()(1 + X2 2) - 0

Feasible condition
x1+x—2<0

Multiplier sign: non negativity of the multiplier
A>0
Complementary slackness condition

Ax1+x —2)=0.



Find the solution By the complementary slackness condition
)\(Xl + X2 — 2) =0,

we have that A\=0or x;y + xo —2 =0.
If A =0 then £(x1,x) = (x1 — 1) + (x2 — 2)?, and

DL(x1,x2) = (2(x1 — 1),2(x2 — 2)),

whose stationary point is (1,2). This is not an admissible point.
Let x{ + xo —2 =0 then x» =2 — xq,

DoL=20xx—1)+A=0
Dl =2(xp —2) + A =0,

then xo =2 —x;and x1 —1=x — 2

1 3
X]_:§7 X2:§ A:]_
The value 13 1
*_f Yy =

(p primal )



For each pair (A\) with A > 0, the Lagrange dual function
G(\) = min L(x, A) = min{(x1 — 1)% + (x2 — 2)2 + A(x1 + x2 — 2)},

subject to A > 0. This problem is called the Lagrange dual
problem associated with the primal problem.



X1
(ba =1+ (e =2*) + A —(a+x—-2) =0
2
A
Xl—].:—E
A
X2—2——§
X1 +x—2=-A+1
A2 z?
GO =7 =X +A=-2+2



G(\) concave

d* = G(A\) =3
Ty 6

(d dual)
d* = p*

Strong duality: d* = p*



Duality in Linear Programming
KKT conditions

Healthy Diet.

A healthy diet contains m different nutrients in quantities at least
equal to by, . . ., by.

We choose nonnegative quantities xy, . . . ,xy of N different

foods. One unit quantity of food j contains an amount a;; of
nutrient /, and has a cost of ¢;.
P> The goal is to determine the cheapest diet that satisfies the
nutritional requirements.



Linear Programming Primal Problem

miny ¢ " x,
Ax > b,
x>0

where c e RN, b e RM, x e RN, and Ais an M x N matrix.



Table: VITAMIN FOR UNIT

FOOD: 1234 |
A VITAMIN 0231
C VITAMIN 1130

Table: Global quantity of vitamine for survival

A VITAMIN 20 |

C VITAMIN 15 |



Constraints:

2X2 + 3X3 + Xa Z 20

X1 + xp + 3x3 > 15.

x1 > 0,

x2 > 0,

x3 > 0,

x4 > 0,

Matrix Form
0 2 31 X1 20
A= 2>
X3

1130 X4 15

Table: COST BY UNIT
FOOD 12 34 |

COST 1510 20 12 |



Minimize
15x3 4+ 10x0 + 20x3 + 12x4

under the constraints.
Primal Problem

min 15x; + 10xp + 20x3 + 12x4
2x0 +3x3+ x4 > 20

X1 + xo + 3x3 > 15.

x1 20,

x2 2 0,

x3 > 0,

x4 > 0,




Minimize
C1X1 + X2 + C3X3 + CaXxy

with the constraints

aiixt + axo + ai3xz + aiaxs > by

ar1X1 + axnxo + ax3x3 + +axnxs > by.

x1>0,x>0,x3>0,x4 >0,



Primal-Dual Problems

minc’ x max b’ u
Ax > b ATu<c,
x>0 u>0

Dual Problem.
The dual problem is the following

max b’ u
ATu<ec,
u>0

Maximize
biuy + bouy = 20wy + 15wy



Constraints

AT =

u1

= WwN o
IN

o Wk =

u2

(1, < 15

2u1 + up <10
3up +3ur, <20
up <12
u120
UQZO

15
10

12



Maximize
20u1 + 15up

under the constraints

u <15
2u; + up <10
3u; +3up <20

u < 12.
up >0, u >0

Exercise
Draw the constrained set.
In general form

max bTu, ATy <c u>0
u

Theorem

Weak duality theorem. Let x* primal feasible and u* dual
feasible Then cTx* > b' u*



Gap
yi=p*—d*=minc'x —maxb’u>0
X u

Theorem
Let x* primal feasible and u* dual feasible If ¢ x* = bT u* then

cT"x* = cTxmin and b7 u* = b7 Upax

Proof.

Let x be primal feasible and v dual feasible. Then
c'x*=b"u <cTx

and



KKT conditions.
The Lagrangian £ : RV x RM x RP associated to the optimization

is given by
L(x, A, p) = F(x) + Ag(x) + ph(x), (26)

with A, u € RY x RP. The KKT conditions can be formulated as

follows
%(X07A5M):O, l:].,,N

)\,'g,'(Xo) = 07 = 1, ey M,

g(Xo) < 0, h(X()) == 0, A > 0



The following example shows that the KKT conditions are
necessary, but not sufficient for the existence of a minimizer.
Consider the minimum constrained optimization problem with

_ 9
f(x1,x2) = x1x2 — 7
gl(x1,x) = —x1 —x2+3<0
g2(x1,X2) =—x+x <0.



—x1—x +3<0 < x>-x31+3
x4+ x1 <0 <= x>x

The Karush-Kuhn-Tucker conditions for x° = (x1, x2) are

A1>0, X>0

Fa (x0) + Mg (x°) + hogg (x°)
Fro (x%) + Mg, (x°) + Nogg, (x°)
Agt(x%) =0

Mg?(x%) =0

g'(x?) <0,  g(x%) <o

0,
0

)




Since
gh(xi,x)=-1  gi(x,x)=-1
g)gl(X17X2) =1 gfz(Xl,Xg) =-1

and the conditions becomes

— A1+ A2=0,

XP —A1— X =0,

)\1( XX —x3+3)=0

A= +x9) =0

—xi)—x2 3 <0, —XS—I—X{)SO
A1>0, XA2>0

(27)




A1, A2 can not be both null, since xY = x9 = 0 is not feasible.

If A\ #0 and A\; = 0 then —ngrxf:O xi):xg and
Xg—l-/\g:O,
x¥— 2 =0,

x¥ = —x§ Hence x¥ = xY = 0: this is not possible.



If A1 £ 0 and A» = 0 then

—x¥—x§+3=0

x§ — A1 =0,
X -1 =0
Hence
X = 8
—2x?4+3=0
Finally
3
X](_) = Xg = 5

which is not a local minimizer.



Exercise. Produce two examples of functions with local minima
and maxima in 3-d.



N=3. A open set. f € C%(A) Py = (x0, ¥0,20) € A.
fi(x0,¥0,20) =0 £,(x0,¥0,20) =0 f:(x0,y0,20) =0

In Py = (x0, Yo, 20)

£ £ fxx fxy fxz
fx >0 fXX fxy>0 fy« fy fz| >0
yX yy fZX ny fZZ

then Py = (X0, Y0, 20) is a local minimum point.
In Po = (x0, Y0, 20)

f f fXX ny f;(Z
foe <0 fXX fxy>0 fy« fyy f2] <0
> Y fZX ny fZZ

then Py = (xo0, y0, 20) is a local maximum point



Exercise. In the definition of strict convexity 1—d. Take

x € (x1,x2) Take
X — X2

A=
X1 — X2
Compute 1 — A.

1— )\ = X1 — X

X1 — X2
Find x
x=Xxx1+ (1= A)x

f(x) < f(x1) + M(X —x)

X2 — X1

Exercise. Show that f(x) = ¢ can not have three or more solutions



Exercise

vvyyypwy

>
>

f(x,y,z) = x? +22y+zy

Compute the gradient of f
Find the points verifying Df (x,y,z) = 0.
Compute the Hessian matrix.

Compute the Hessian matrix in the points verifying
Df(x,y,z)=0
Compute the eigenvalues

Classify the points.

Exercise

fx,y)=e"+€& x+y=2
fx,y) =x+2y x*+4y°=1



f:ACR" =R
» f differenziable in x if 3p€ R” such that
m f(x+h)—f(x)—ph _
h—0 (| ]| B

0,

» p = Df(x). Indeed h = te; = (0,...,0,0,¢,0...,0)
f(x + tej) — f(x) — tp;

lim =0
t—0 ‘t’
We have " .
i (x + tej) — f(x) — tp _0
t—0 t
and . .
im (x + te;) — f(x) —
t—0 t

Then f admits partial derivatives and

pi = fy;



of (Xo,yo) (

If (xo,
o) ( Y — %)

f(x,y) — f(x0,¥0) — X = X0) —

V(x=x0)2+ (y — y0)?

—0

as

\/(X—Xo)2+(y—)/o)2—>0

f(x,y) — f(x0, y0) =
T ) T o (i o o)

P continuity Ilm(X ¥)—(x0,¥0) f(x,y) = f(xo0, y0)
Aopenset CR2and f: A— R
f differentiable in (x,y)

» there exist first partial derivatives of f

i Fxthy+k)—f(x,y)—h(xy)h—F, (x,y)k
> lim(4 1)—(0,0) (x+hy+k) (\/2/2)%2( y)h-fy(xy)k _ o

Give the definition n =3




Directional derivatives

A direction

(x = (x1, %2, ..., %n))
of L f(x+t\) — f(x)
ﬁ(x) = [im t

In R X\ = (, B) (x,y) € R?

gi(xvy) _ i [ty + 85) — fx.y)

t—0 t

Give the definition in R3
Theorem. Assume f differentiable in x € A C R”. Then f admits
directional derivative in x with respect to the direction \ and

of

a(x) = Df(x)- A



2

flx.y) {+ (x.y) # (0.0)

0 (x,y) =(0,0)
In (0,0) A = (e, B)
of . f(ta, tB) — £(0,0) 3026 B a?B
3)\(0 0) = lim ; T B2+ ,2) a2+

£(0,0) =0 £,(0,0) = 0: the formula does not hold.
Differentiability in (0,0) of f

f(h k) —£(0,0) h?k
Vh? 4+ k2 (h? + k2)v/h2 + k2

ah?h ah3

k == ah =
(h? + a?h?)Vh? + a?h?>  h?(1+ a?)|h|V1+ a?




Exercise. Study existence of the following limit, where 3 is a real
positive parameter.

|xyz|?

lim . er
() H000) /P + 57 + 22



Exercise. Study differentiability in (0,0, 0) of
f(x,y,z) = |xyz|?,

where « is a real positive parameter.



Exercise. Study differentiability in (0,0, 0) of

f(x,y,2) = (x = a)(y = b)(z = ¢),

where a, b, ¢ are real parameters.



Super-differential, Sub-differential, Hamilton-Jacobi equations
Differential, Super-differential, Sub-differential f : A C RN 5 R
» Differential of f in x. f is differentiable in x if there exists
p € RN such that
im f(x+ h) —f(x) — ph

=0
h—0 1Al ’

» p = Df(x). Indeed take h = te; = (0,...,0,0,¢,0...,0)
f(x+te)) — f(x) —tp

lim =0
t—0 ‘t’
Since . .
fim (x + te;) — f(x) — tp; _0
t—0 t
we have " "
i (x + te;) — f(x) b
t—0 t

Hence f admits partial derivatives and

pi =



liminf limsup f : A — R. Xp accumulation point. € >0

liminf f(x) = !er})(inf{f(x) :x € AN Be(x0) \ {x0}})-

X—>X0

limsup £(x) (sup{f(x):x € AN Be(x0) \ {x0}})-

= lim

X—Xp e—0

As ¢ shrinks, the infimum of the function over the ball is monotone
increasing,

liminf f(x) = sup(inf{f(x) : x € AN Be(x0) \ {x0}})-
X—rX0 >0
As € shrinks, the supremum of the function over the ball is
monotone decreasing,

limsup f(x) = inf (sup{f(x) : x € AN Be(x0) \ {x0}})-

inf
X—X0 >0



Sub-differential and Super-differential Sets

Definition
Aopenset. f:A— Rand x € A accumulation point.

» super-differential of f in x is the set

Dt f(x) := {p e RN :limsup flx+h) — F(x) — ph < 0} ,
h—0 i

» sub-differential of f in x is the set

D~ f(x):=<{peRVN :|iminff(x+h)*f(x)*phzo :
h—0 1Al




Definition
A set Q C RV is said convex if for any x and y € Q,

AX+(1=XNyeQ  forany X €[0,1].

Proposition
The sets D f(x) and D~ f(x) are convex sets.



h) — f(x) — ph
DT f(x) := {p e RN :limsup flx+ h) (x)=p < 0} )
h—0 1Al

Take p1 € DT f(x), and p, € DT f(x), we wish to show, for
A€ [0,1]
Ap1+ (1= N)p2 € DTF(x).

Since
f h) — f(x) — p1h
limsup (x+h) ||h||(X) P1 <0
h—0
and
f h) — f(x) — pa2h
limsup (x+h) (x) =P <0

h—0 Il B



Then

lim sup fFix+h) = F(x) = (Apr + (1 = N)p2)h _

h—0 1Al
lim sup
h—0
AMf(x+h) = f(x))+ (1 =N (f(x+h)—1F(x))—(Ap1+ (1= A)p2)h <
1Al -

) — Fx+ h) — F(x) — pah
Mimsup TOF A ZFO) =P (3 g i qup PP — F) = P2
h—0 [l h—0 [l
<0



Proposition

The sets D f(x) and D~ f(x) are closed sets.
D*f(x) is closed <= C(D*f(x)) is open.
Let p € C(D"f(x)) and x, — x such that

f(xo + h) — F(xa) — ph
fimsup Ot = Flxa) = p
h—0 Al

>5>0



We take p’ such that ||p — p'|| < €
We compute

7 0) = ) =P s+ ) — ) — ph)
Tl T

[(p — p')h|
HhH < HP—P’H

Take 62%



f(xn+ h)—f(xn) —p'h

f(xn+h) — f(xn) —ph ¢

>
1Al N

Hence C(D*f(x)) is open.

1Al



Definition

1-d

» super-differential of f in x is the set

f h) — f(x) — ph
Dt f(x) = {p €R :limsup (x+ h) ()= p < O},
h—0 ’h’

» sub-differential of f in x is the set

D™ f(x) := {p €R :liminf XF M = FO) —ph o},
h—0 |




Dini’s derivatives

A_f(x) = limsup Flcth) = f(X), A1 f(x) = limsup flocth) = Fx)
h—0~ h h—0+ h
~piming FOx ) = £(x) (x4 ) — f(x)
Af(x) = |;1r1c')'lf h , Apf(x) = Ilhrlg]rf p )

9




We have
Apf(x) < Apf(x) and  A_f(x) < A_f(x),

and all Dini’s derivatives are equal to v/(x) if u is differentiable in
X.
Recall

limsup —f(x) = —liminf f(x)

X—X0 X—rX0

Proposition
Then the super-differential of f in x is the set

DYf(x)={peR : Apf(x)<p<A_f(x)}
and the sub-differential of f in x is the set

D f(x)={peR : A_f(x) <p <A f(x)}.



Indeed let h > 0. p € DT f(x)

f h) — f(x) — ph
lim sup (x+h —f(x)—p <0
h—07t h

f(x+ h) —f(x)
h

< limsup
h—0+

Let h < 0. p€ DT f(x)

<p = p>Nf(x)

f h) — f(x) — ph f h) —f
limsup (x+h) (x)=p <0 < limsup (x + h) (x)
h—0- —h h—0- —h

<~ —p > —liminf focth) = ()
h—0— h

< —p

— p < A_f(x)



Example Let us consider f : R — R defined by f(x) = —|x| The
only point at which fis not differentiable is x = 0. At this point

D*(0) = {p e R : A4f(0) < p < A_£(0)}

. —h
AF(0) = Jfim & =1
h
A-1(0) = hingi h !

D*f(0) = [-1,1]
D=f(0)=10



Example Let us consider f : R — R defined by f(x) = |x| The only
point at which fis not differentiable is x = 0. At this point

DT F(0) =0

D™ f(0) = [1,1]

Observe that the subdifferential at any point x < 0 is the singleton
set {—1}, while the subdifferential at any point x > 0 is the
singleton set {1}.



Generalization of the fact that the derivative of a function
differentiable at a local minimum or a local maximum is zero:

a) If u has a local maximum in x, then 0 € DT u(x).

(b) If u has a local minimum in x, then 0 € D~ u(x).

Proof. If u has a local maximum in x, then u(x + h) — u(x) <0
for every h, close to zero. Hence

u(x+h) <u(x)+0-h+ o(h)

for h — 0 and thus
0 € DT u(x).

The other case is similar.



Examples of Hamilton-Jacobi equations
Examples of first order non linear PDEs Hamilton-Jacobi equations
The Eikonal Equation

| Dul = f(x),

related to geometric optics



Stationary Hamilton-Jacobi equation:
H(x, u, Du) = 0,

x € QC RN where H: QxR xRN = R is called Hamiltonian in
general convex in p (in the gradient-variable).



The Hamilton-Jacobi-Bellman equation: It is a particular
Hamilton-Jacobi equation important in control theory and
economics.In this case the Hamiltonian has the form:

H(x, u(x),p) := zgg{Au — b(x,a)-p—1~f(x,a)},

where A is subset of RM. b (dynamic function ) and f (the cost
function) For any fixed A > 0

Au+ Sup{_b(X7 a) P f(Xa 3)},
acA



Solutions of

Au+sup{—b(x,a) - p—f(x,a)} =0,
acA

u is known as the value function associated to the corresponding
control problem.



Lipschitz functions Let / = (a,b) CR —R. f: | - R
Lipschitzian if there exists L > 0 such that

[f(x)—f(y)| < Llx—y| ¥x,yel

» Lipschitz functions are continuous ( § = ).

» A derivable function with bounded derivative is Lipschitzian



Exercises

> If f and g are Lipschitz functions then f4g is a Lipschitz
function (show and find the Lipschitz constant)

» If f and g are Lipschitz and bounded functions then fg is a
Lipschitz function (show and find the Lipschitz constant)



Example of optimal control problem

A. Minimal exit time from an open set. Consider a physical
system satisfying the state equation

X(s) = a(s)
in the open interval Q = (—1,1), with the initial condition
X(0) = x.
We only consider bounded controls «:
la(s)] <1 forall s.

Such a control is called admissibile.



Problem: find o such that the system attains the boundary of Q0 in
the smallest possible time T (x).

Proposition

(a) We have T(x) =1— |x]| for all x € [-1,1].

(b) For each fixed x € [—1, 1] an optimal control is the constant
function
a(s) =sign of x, 0<s< T(x).



If 0 <t < 1—|x]|, then for every admissibile control o we have

t
Xe(0) = e+ [ als) ds| < x4 e < 1,
0
whence
T() > 1~ |x

Moreover, for x # 0 we have equality in this estimate if and only if
t=1—|x| and a(s) = sign of x for all 0 < s < t.



Remark

» The proof shows that for x # 0 the control is unique, and
depends on the time only via the system:

a(s) = sign of X(s).

Controls of this type, called feedback controls, have much
interest in the applications because they allow us to modify
the state of the system on the basis of the sole knowledge of
its actual state.

» In case x = 0 there are two optimal controls: the constant
functions « =1 and o = —1.



The function T : [—1,1] — R satisfies the following conditions:
» T>0in(—1,1)and T(—-1)=T(1) =0;
» T is Lipschitzian;

» |T'(x)] —1=0in every point x € (—1,1) where T is
differentiable.



Next we observe

|T'(x)| =1

x € (—1,1)and T(—1) = T(1) = 0 (1-d version of
|Du(x)| =1 =0)



» By Rolle’s Theorem we see that there are not differentiable
solutions
If the real-valued function T is continuous on the closed
interval [—1, 1], differentiable on the open interval (—1,1),
and T(—1) = T(1), then there exists at least one ( in the
open interval (—1,1) such that T'(¢) =0
Hence | T'(¢)| # 1. Not possible.

» many solutions a.e.: they satisfy the equation almost
everywhere (at each of their points of differentiability).

> Select one solution.
It suffices to observe that in every point x # 0 we have

DT T(x) =D T(x) = T'(x) = +1,
while in x = 0 we have already seen that

D*T(0)=[-1,1 and D~ T(0)=0;



It suggests a notion of weak solution. Consider a more general
case. By stationary Hamilton—Jacobi- equations we understand a
class of first-order nonlinear partial differential equations of the
type

H(x, u, Du(x)) =0, (28)

Michael G. Crandall, P-L. Lions:

They introduced the notion of viscosity solutions: this has had an
effect on the theory of partial differential equations.

M. G. Crandall and P.-L. Lions, Viscosity solutions of
Hamilton-Jacobi Equations, Trans. Amer. Math. Soc. 277 (1983),
1-42.



Definition
u e C(Q) is a viscosity solution of (28) if

H(xo, u(x0),p) <0 forevery xg€Q and pec D u(x),
(29)
and

H(xo,u(x0),p) >0 forevery xp€Q and pe D u(xp).
(30)



Remark

» If u is differentiable in a point x, then (29) and (30) are
equivalent to H(x, u(x), Du(x)) = 0.



Proposition

A. Exit time. The minimal exit time is a Lipschitzian viscosity
solution of the equation

IT'(x)|=1 in (—1,1).
Indeed in x = 0 we have already seen that

D*T(0)=[-1,1] and D~ T(0)=0;

hence
lp| <1 Vpe D*T(0)



Controlled evolution equation

X(s) = b(X(s), a(s)), X(0) =x,

where b: RV x A — RV,
« is the control function « : [0, 400) — A



+0o0
u(x) = ir(lf J(x,a() = ir;f/o f(X(s),a(s))e **ds

Take n=1 b(x,a) =1, f(x,a) =x
Compute u. Show that u verifies

Au +sup{—b(x,a) - u'(x) — f(x,a)} = 0.

acA



Subsolution

u € C(Q) is defined to be a subsolution of H(x, u(x), Du(x)) =0
in the viscosity sense if for any point xp € Q and any C! function
¢ such that u — ¢ has a local max in xp we have

H(xo, u(x0), Dp(x0)) <0

Supersolution

u € C(Q) is defined to be a supersolution of H(x, u(x), Du(x)) =0
in the viscosity sense if for any point xg € Q and any C* function
¢ such that v — ¢ has a local min in xg, we have

H(xo, u(x0), Do(x0)) >0

Viscosity solution
A continuous function u is a viscosity solution of the PDE if it is
both a supersolution and a subsolution.



Test functions. Show that the conditions for subsolution and
supersolution hold in x = 0.

First, assume that ¢(x) is any function differentiable at x = 0 with
¢(0) = u(0) =1 and ¢(x) > u(x) near x = 0. From these
assumptions, it follows that

¢(x) — ¢(0) = —|x|
. For positive x, this inequality implies
i 00) — 6(0)
x—0t X
On the other hand, for x < 0, we have that
i )= 000) _
x—0~ X
Since ¢ is differentiable, the left and right limits agree to ¢/(0),
and we therefore conclude that

#(0)] < 1.

Thus, u is a subsolution. Moreover u is a supersolution. This
implies that v is a viscosity solution.

> —1.



The dynamic programming principle

and the Hamilton-Jacobi-Bellman equation

A control problem may be described as a process to influence the
behavior of a dynamical system, in order to achieve a desired result.
If the goal is to minimize a cost function then we speak of an
optimal control problem. More generally, in the method of
dynamical programming we use the notions of the value function
and the optimal strategy.

The value function satisfies, at least formally, a first-order partial
differential equation, the so-called Hamilton-Jacobi-Bellman
equation. Under some hypotheses of regularity, we study how to
find the optimal strategy by using the value function.



+oo
u(x) = inf J(x,a() = inf /0 F(X(s), as))e**ds

Take n=1 b(x,a) =1, f(x,a)=x

X(s)=x+s
x+ 1
u=—+-=
AN

. Then u verifies

Au + zgz{—b(x, a)-u'(x) — f(x,a)} = 0.

On the other hand
Av —V/(x) = x=0.
Solutions

1
v(x) = § + 2 + ce™

Selection of the value function



Ordinary differential equations
X(s) = b(X(s),a(s)),  X(0) = x,

« is the control function, measurable in [0, +00) that takes its
values in a compact set A. We make assumptions on b such that
for every given x € RV, there exists a unique continuous function
X :[0,00) — RN:

X)f‘(t):x—i-/otb(X(s),a(s)) ds, te0,00).



b:RVx A= RN
. Assume that
> b(x,a) € C(]RN x A)

» b is Lipschitzian with respect to x € RV for all a € A with a
nonnegative real constant L

Hb(x, a) — b(x/, a)H <Ly Hx — X’H :

V(x,a) € RN x A, V¥(x',a) e RN x A
P there exists a nonnegative real constants M, such that

1b(x; s)I| < M

for all (x,a) € RN x A.



The value function A > 0

+00
u(x) = inf/ f(X2(s), as))e ™ ds
« Jo
forany t >0
f:RVxA-R
. Assume that
> f(x,a) € C(RN x A)

> f is Lipschitzian with respect to x € RN for all a € A with a
nonnegative real constant L¢

[F(x,2) = F(x,a)| < Le [lx =<

V(x,a) € RN x A, ¥(x',a) € RV x A
P there exists a nonnegative real constants M such that

|f(x,s)] < M¢

for all (x,a) € RN x A.



Example

X(s) = —=X(s)-afs), X(0)=x

with the constraint on the controls:

la(s)] < 1.

X2 (t) = xe~ o () o5



In the example, take

The value function
[o¢]
u(x) = inf/ |X(s)| e ds,
@ Jo

where X2(t) is the state.



Proposition

(a) u(x) = |x| /3 for any x € R.

(b) The optimal control is the constant function o = 1.



For any admissible o we have

X2(E)] = [xem B | > x| e, £>0

hence
/ X0 (¢)] e~2t dtz/ x| e=3 dt = |x]| /3.
0 0

We have equality taking a(s) =1 for any s.



The dynamic programming principle is

o) <[ 050 100

for any t > 0.



The Hamilton-Jacobi-Bellman equation

Thanks to the dynamic programming principle we get that the
value function satisfies

Au+ r;weaz‘({—Du(x) - b(x,a) — f(x,a)} =0.

In what follows we assume regularity properties.
u e CYRN).



From the Dynamic Programming Principle

() = inf /O F(X2(s),a(s))e5ds + u(X2(1))e )

for any t > 0. Take
a(s)=a€A,

with a € A arbitrarily chosen.



u(x) — u(X2(t))e M

X

—/\sds
[ o), ae
< ? ;



u(x) — u(X2(t))e M £ u(X2(t)) _ 1

t
< [ o) e s
t t Jo

u(x) — u(X2(t) + (1 — e )u(X2(t)) _ 1

- /t f(XZ(s), a)e_)‘sds
0

t Tt



1

- t (s),a)e Ads — f(x,a)
f(X{(s),a
t/o (



Hence
Au — Du(x) - b(x,a) — f(x,a) <0,

for all a € A and
Au + maIZ({—Du(X) - b(x,a) — f(x,a)} <0,
ac

It is possible to show also the reverse inequality (here we do not
give the proof)

Au+ ma}{—Du(x) - b(x,a) — f(x,a)} >0,
ac
Hence we have

Au + Teaz‘({—Du(x) - b(x,a) — f(x,a)} = 0.
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