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Consider the set of real numbers

A = {xn =
n∑

k=0

1
k!

: n ∈ N}.

The set A is bounded. Indeed, we have clearly
n∑

k=0

1
k!
≥ 2

for all n. On the other hand, since

k! ≥ 2k−1

for all k ∈ N by induction, we have
n∑

k=0

1
k!
≤ 1 +

n∑
k=1

1
2k−1

<= 1 + 2 = 3

for all n. Hence
2 < sup

n
A ≤ 3.

By definition, we set

e = sup
n

A.

Now we consider

A′ = {xn =
(

1 +
1
n

)n

: n ∈ N},

By Bernoulli inequality
2 < sup

n
A′

and, applying the inequality

n+2√a1 . . . an+2 ≤
a1 + · · ·+ an+2

n + 2
with

a1 = · · · = an = 1 +
1
n

and an+1 = an+2 =
1
2

since
n+2

√(
1 +

1
n

)n

· 1
2
· 1
2
≤ n + 2

n + 2
= 1.

We obtain xn ≤ 4. Hence (xn) is bounded from above by 4. Then, we set

e′ = sup
n

A′.
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In order to give another useful definition of e, consider the binomial expansion,(
1 +

1
n

)n

=
n∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)
nk

1
k!

.

But
n(n− 1)(n− 2) . . . (n− k + 1)

nk
=

n

n
· n− 1

n
· · · n− k + 1

n

= 1
(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
≤ 1.

Hence (
1 +

1
n

)n

≤
n∑

k=0

1
k!

for all n. Taking the supremum over n of

A′ = {xn =
(

1 +
1
n

)n

: n ∈ N},

we conclude that
sup

n
A′ ≤ sup

n
A.

We have just shown that
e′ ≤ e.

We are going to show that in fact e′ = e. We take m < n. Then(
1 +

1
n

)n

=
n∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)
nk

1
k!

≥
m∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)
nk

1
k!

.

By the definition of e′, it follws that

e′ ≥
m∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)
nk

1
k!

=
m∑

k=0

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
· 1
k!

.

Taking the suprumum over n we conclude that

e′ ≥
m∑

k=0

1
k!

for all m. Now taking the supremum over m, the reverse inequality

e′ ≥ e

and thus the equality
e′ = e

follows.
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Let us investigate more closely the sequence

xn =
(

1 +
1
n

)n

.

We are going to show that this sequence is increasing, so that the Neper number
is the limit of this sequence, as n tends to ∞, as a consequence of the fondamental
theorem of monotone sequences.

We prove the monotonicity of the sequence xn is two different ways.
First we consider the ratio

x2

x1
> 1,

and

xn+1

xn
=

(
1 + 1

n+1

)n+1

(
1 + 1

n

)n

=
(

n + 2
n + 1

)n+1(
n

n + 1

)n

=
(

n + 2
n + 1

)n+1(
n

n + 1

)n+1(
n + 1

n

)
=

(
n + 2

(n + 1)
n

(n + 1)

)n+1(
n + 1

n

)
=

(
n2 + 2n

(n2 + 2n + 1)

)n+1(
n + 1

n

)
=

(
n2 + 2n + 1− 1
(n2 + 2n + 1)

)n+1(
n + 1

n

)
=

(
n2 + 2n + 1
n2 + 2n + 1

− 1
n2 + 2n + 1

)n+1(
n + 1

n

)
.

We recall the Bernoulli inequality

(1 + h)n > 1 + nh

h ≥ −1, h 6= 0, ∀n ∈ N, such that n ≥ 2.
We have

h = − 1
n2 + 2n + 1

> −1, ∀n

since

1
n2 + 2n + 1

< 1, ∀n.

Hence,
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xn+1

xn
=

(
1 + 1

n+1

)n+1

(
1 + 1

n

)n >

(
1− 1

n + 1

)(
n + 1

n

)
= 1.

This ends the first proof. Next, we give another proof based on geometrical and
arithmetic media of positive real numbers.

The sequence (xn) defined by

xn =
(
1 +

1
n

)n

, n = 1, 2, . . . .

is bounded and increasing. Indeed, applying the inequality

n+1√a1 . . . an+1 ≤
a1 + · · ·+ an+1

n + 1
with

a1 = · · · = an = 1 +
1
n

and an+1 = 1,

we obtain
n+1

√(
1 +

1
n

)n

≤ n + 2
n + 1

= 1 +
1

n + 1
.

This is equivalent to xn ≤ xn+1. Hence (xn) is increasing.
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