1. Show that

$$
x y \leq \frac{x^{2}}{2}+\frac{y^{2}}{2}, \quad \text { for all } x, y \in \mathbb{R}
$$

2. Show that

$$
2 x y \leq \epsilon x^{2}+\frac{y^{2}}{\epsilon}, \quad \text { for all } x, y \in \mathbb{R}, \epsilon>0
$$

3. Show that

$$
(x+y)^{2} \leq \frac{x^{2}}{t}+\frac{y^{2}}{1-t}, \quad \text { for all } x, y \in \mathbb{R}, 0<t<1
$$

4. Give the definition of a convex function in convex set C of \mathbb{R}^{n}.
5. Using 3. show that x^{2} is a convex function in \mathbb{R}.
6. Let f^{\star} the conjugate of f, i.e. the Legendre trasform of f, defined by

$$
f^{\star}(\zeta)=\sup _{x \in R^{N}}\{x \zeta-f(x)\} \quad \zeta \in R^{N}
$$

Show that if $f(x)=\frac{1}{p}|x|^{p}$ then $f^{\star}(x)=\frac{1}{q}|x|^{q}$, where $\frac{1}{p}+\frac{1}{q}=1$.

