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CHAPTER 1

Prerequisities

1. Vectors

Vector spaces were introduced in the 17th century in the calculus of
solutions of systems of linear equations. More abstract treatment was for-
mulated firstly by Giuseppe Peano (1858-1932). Although here it is given
an abstract formulation, the only applications we will consider involve Eu-
clidean vector spaces, matrices and systems of linear equations.

Let V be a set endowed with an inner operation + : V × V → V and
a product by scalars · : R× V → V (the symbol · is usually omitted in the
explicit computations). The triad (V,+, ·), or shortly V , is a real vector space
if the following properties for the operations are verified (for any u, v ∈ V
and λ, µ ∈ R)

• (V,+) is a group, i.e. it satisfies
– Associativity of addition: u+ (v + w) = (u+ v) + w.
– Commutativity of addition: v + w = w + v.
– Identity element of addition: There exists an element 0 ∈ V,

called the zero vector, such that v + 0 = v for all v ∈ V.
– Inverse elements of addition: For any v ∈ V , there exists an

element w ∈ V, called the additive inverse of v, such that
v + w = 0. The additive inverse is denoted by −v.

• Distributivity of scalar multiplication with respect to vector addi-
tion: λ(v + w) = λv + λw.
• Distributivity of scalar multiplication with respect to field (R) ad-

dition: (λ+ µ)v = λv + µv.
• Compatibility of scalar multiplication with field (R) multiplication:
λ(µv) = (λµ)v.
• Identity element of scalar multiplication: 1v = v, where 1 denotes

the multiplicative identity in R.

Note that the previous definition can be given by replacing R with any field
K. The elements of V are called vectors.

Example 1. Example of vector spaces are:

- The set with one element {0} with trivial operations is a (real)
vector space.

- The field R with its operations of sum and product is itself a real
vector space.

- The set RN is a real vector space with the following operations.
Given x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ) in RN and
λ ∈ R, one can define

(x+ y) = (x1 + y1, x2 + y2, . . . , xN + yN )

1
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λx = (λx1, λx2, . . . , λxN ).

- The set C([a, b]) of the continuous functions in an interval [a, b]
with the operations

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x)

Since the only inner operation in a vector space is the sum, the key word for
vector space theory is linearity. Given v1, v2, . . . , vk a linear combination of
vectors is a vector

λ1v1 + λ2v2 + λkxk,

where λ1, λ2, . . . λk ∈ R are called the coefficients of the linear combination.

Definition. A finite non-empty set of vectors is said linearly dependent
if there exists a linear combination of them with not all zero coefficients such
that

λ1v1 + λ2v2 + · · ·+ λkxk = 0

A set of vectors which is not linearly dependent is called linearly independent.

Note that being linearly dependent does not depend on the order of the
vectors. Moreover if the set includes the null vector, than it is certainly a
set of linear dependent vectors, since, being for instance v1 = 0, one can
write

1v1 + 0v2 + · · ·+ 0xk = 0.

Moreover, if the set has only one element v, then it is linear dependent if
and only if v = 0. It the set is {v1, v2}, then it is linear dependent if and
only if either v1 = 0, or v2 = 0, or v2 is multiple of v1, i.e. v2 = λv1 for some
l ∈ R.

Given V and vectors v1, v2, . . . , vk in V , consider the set of all the possible
linear combinations of these vector

U = {λ1v1 + λ2v2 + λkvk such that λi ∈ R, i = 1 . . . k}.

Since the sum of two elements of U and the product by a scalar of an element
of U still belongs to U , then with the same operations defined in V , U itself
a vector space, contained in V , and it is said a vector subspace of V . It is the
subspace generated by the vectors v1, v2, . . . , vk, and the set {v1, v2, . . . , vk}
is said to be a set of generators of U . If it happens that U = V then it is a
set of generators for V . Thus

Definition. A set of linearly independent vectors of V which generates
V is said a basis of V

Note that given a set of generators, one can chose a subset of it, which
is maximal with respect to the condition of being independent. Then it is
still a set of generators, hence it is a basis for V . The definition of a set of
generators can be extended to infinite sets, so it may happen that a vector
space has a basis with infinite elements. In any case, a vector space has an
infinite amount of bases, but it can be proven that all of them have the same
cardinality, which is defined as the dimension of the vector space. Any set
of vectors which exceed the dimension of the space is necessarily a set of
dependent vectors.
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Example 2. The canonical (or standard ) basis in RN is given by e1 =
(1, 0, . . . , 0), e2 = (0, 1, . . . , 0), eN = (0, 0, . . . , 1) and the dimension of RN
is N .

Remark. We note that any part of the theory of vector spaces can
be developed in the infinite dimensional case, with slight care. A typical
example of infinite dimensional (real) vector space is the set of polynomials
in one variable a0+a1x+· · ·+anxn and a basis is {1, x, x2, . . . }. On the other
side, the space of continuous (differentiable) functions on a fixed domain has
no numerable basis.

Proposition 1.1. A set of vectors {v1, v2, . . . , vN} is a basis of V if
and only if any vector v ∈ V can be expressed as a linear combination of the
vectors v1, v2, . . . , vN , in a unique way, up to the order.

By the above proposition, given a basis {v1, v2, . . . , vN} of V , any v ∈ V
is bi-univocally associated to the set (λ1, . . . , λN ), said the set of the coor-
dinates of v, of its coefficients with respect to the basis (to avoid ambiguity
the bases are chosen as ordered sets).

Example 3. If x = (x1, x2, . . . , xN ) ∈ RN , its coordinates with respect
to the canonical basis of RN are the component of the vector x itself.

Definition. Let V and W be real vector spaces, a map L : V → W is
said a linear transformation if it is compatible with the operations in V and
W respectively, that is if

L(λu+ µv) = λL(u) + µL(v), ∀u, v ∈ V, ∀λ, µ ∈ R.
In particular, If W = R, L is said a linear functional.

It is simple to see that the set

L(V,W ) = {L : V →W linear}
with the natural operations of sum and multiplication by scalars is a vector
space. The set of all the linear functionals from V → R is called the dual
space of V and it is denoted by V ?.

Example 4. In the next we find a basis of (RN )?, the dual space of RN .
For every i = 1, 2, . . . , N we consider the functional

ei : RN → R, ei(x) = x · ei = xi,

which selects the i-th coordinate of the vector x with respect to the canonical
basis of RN . In particular, for any i, j = 1, . . . , N we have

ei(ej) = δij ,

with

(1.1) δij =

{
1 i = j

0 i 6= j.

With this notation it is easily proven that the ei’s are linearly independent
vectors of (RN )?. Consider now a linear functional

L : RN → R,
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L(x) = L(x1 ·e1 +x2 ·e2 + · · ·+xNeN ) = x1L(e1)+x2L(e2)+ · · ·+xNL(eN )

Setting

ai = L(ei) ∈ R, i = 1, 2, . . . , N

it is

L(x) = x1a1 + x2a2 + · · ·+ xNaN ,

thus L is univocally determined by its values on the vectors e1, . . . , eN of the
canonical basis, that is the scalars a1, . . . , aN . Moreover, recalling the defini-
tion of the ei’s, one can write L as a linear combination of e1, e2, . . . , eN ,with
coefficients a1, a2, . . . , aN . In fact,

L(x) = x1a1 + x2a2 + · · ·+ xNaN = a1e
1(x) + a2e

2(x) + . . . aNe
N (x).

Thus e1, e2, . . . , eN generate (RN )?, hence they are a basis for (RN )?, which
is said the canonical (dual) basis of (RN )?. This relation gives an explicit
one-to-one correspondence between (RN )? and RN .

More generally, it is possible to show that there is a one to one corre-
spondence between the vector space of linear transformations L(N,M) =
{L : RN → RM , linear} and the set of M × N matrices as we are going to
see later.

2. Matrices

We denote by SM×N the set of matrices with M rows and N columns. A
matrix with the same number of rows and columns is said a square matrix.

Given two matrices with real (or complex) coefficients P = (pij) and
Q = (qij) ∈ SM×N , λ ∈ R then we define

R = P +Q ∈ SM×N and⇔ rij = pij + qij i = 1, . . . ,M j = 1, . . . , N

S = λQ ∈ SM×N ⇔ sij = λqij i = 1, . . . ,M j = 1, . . . , N

The null matrix in SM×N is the matrix with all null entries, i.e.

(1.2)

( 0 0 0
...

. . .
...

0 0 0

)

With those operations, SM×N is a real (complex) vector space. We introduce
a multiplication between matrices. Given Q ∈ SM×P and P ∈ SP×N we set

R = QP ∈ SM×N ⇔ rij =
P∑
k=1

qikpkj i = 1, . . . ,M j = 1, . . . , N

It is important to observe that the previous definition is well posed if and
only the number of columns of first term of the multiplication is equal to
the number of rows of the second term.

Remark. If N = M = P , the matrices P and Q can be multiplied in
both the orders, but the product is not commutative. Take for instance(

1 0
1 1

)(
1 2
3 4

)
=

(
1 2
4 6

)
,
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1 2
3 4

)(
1 0
1 1

)
=

(
3 2
7 4

)
.

The following holds:

Q(P1 + P2) = QP1 +QP2, ∀Q ∈ SM×P , P1, P2 ∈ SP×N ,
Q(λP ) = λ(QP ), ∀λ ∈ R, Q ∈ SM×P , P ∈ SP×N .

The unit (square) matrix I = (δi,j) ∈ SN×N

(1.3)

( 1 0 0
...

. . .
...

0 0 1

)
,

it is the neutral element for the product of matrices, that is

QI = IQ = Q, ∀Q ∈ SN×N .

The transposition is a linear transformation from SM×N to SN×M which
associates to Q ∈ SM×N the matrix QT ∈ SM×N whose elements are

qTij = qji i = 1, . . . ,M j = 1, . . . , N.

Given Q,R ∈ SM×N , λ ∈ R, we have

(QT )T = Q

(Q+R)T = QT +RT

(QR)T = RTQT

(λQ)T = λQT

Definition. A matrix Q ∈ SN×N is said

i) symmetric if Q = QT .
ii) orthogonal if QQT = QTQ = I

Remark. For matrices with complex entries one can also consider the
complex coniugate of the entries of the matrices. Given Q ∈ SM×N , we
consider the conjugate transpose Q? ∈ SN×M whose elements are

q?ij = qji i = 1, . . . ,M j = 1, . . . , N

(observe that if Q has real entries, then Q? = QT ). For Q,R ∈ SM×N
complex matrices, λ ∈ C, we have

(Q?)? = Q

(Q+R)? = Q? +R?

(QR)? = R?Q?

(λQ)? = λQ?

A complex matrix Q ∈ SN×N is said

i) hermitian if Q = Q?;
ii) unitary if QQ? = Q?Q = I.
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Definition. A matrix F ∈ SN×N is said invertible (or nonsingular) if
there exists a matrix G∈ SN×N such that

FG = GF = I.

The inverse G is denoted by F−1.

Not all square matrices have inverses, but if F is invertible also F−1

is invertible. We recall some properties. Take F,G ∈ SN×N invertible
matrices.

(F−1)−1 = F

(F T )−1 = (F−1)T

(FG)−1 = G−1F−1

Let Q be a square matrix with coefficients in a field K. The determinant
det(Q) of Q is scalar associated to the matrix Q which helps in distinguish
invertible from non invertible matrices. It can be computed using the Leib-
niz formula, which can be considered as the definition of the determinant
(although there is a non computational way to define it):

det(Q) =
∑
σ∈Sn

sgn(σ)

N∏
i=1

qi,σ(i),

where sgn is the sign function of permutations (+1 and -1 for even and odd
permutation, respectively) in the permutation group SN .

Example 5.
• If N = 1, Q = q ∈ R, then det(Q) = q;
• If N = 2 then S2 = {(12), (21)} and

det(Q) =
2∏
i=1

qi,σ1(i) −
2∏
i=1

qi,σ2(i) = q1,1q2,2 − q1,2q2,1.

• By Leibniz formula, it is easy to see that if Q is the null matrix,
then det(Q) = 0. If Q = I, then det(Q) = 1. Moreover if Q is
a diagonal matrix (with all zero on the entries qi,j with different
indices) or triangular (that is, if qi,j = 0 for any i < j, or for any
i > j), then the determinant is the product of the entries on the
diagonal.

Proposition 1.2. The following properties hold

det(F T ) = det(F )

det(FG) = det(F )det(G)

det(F−1) =
1

det(F )

det(λF ) = λNdet(F ), ∀λ ∈ R.
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An easier way to compute the determinant of a matrix is given by fol-
lowing rule, due to Laplace,

(1.4) det(Q) =

{
q11 if N = 1∑N

j=1 qij∆ij if N > 1

where ∆ij = (−1)i+jdet(Qij) and det(Q)ij is the determinant of the sub-

matrix ∈ SN−1×N−1 obtained by removing from Q its i-th row and j-th
column.

It can be shown that

Theorem 1.3. A matrix is invertible if and only if its determinant is
different from zero.

3. Linear transformations

Given a matrix Q ∈ SM×N , consider the transformation LQ : RNRM
defined by

LQ(x) = Qx, ∀x ∈ RN ,

where x is intended as a matrix N × 1. Explicitly:
(1.5)( a1,1 a1,2 . . . a1,M

. . . . . . . . .
aM,1 aM,2 . . . aM,N

)( x1

. . .
xN

)
=

( a1,1x1 + a1,2x2 · · ·+ a1,NxN
. . . . . . . . .

aM,1x1 + aM,2x2 + · · ·+ aM,NxN

)
.

Since the multiplication of matrices commutes with the sum and the product
with scalars, it is easily seen that LQ is a linear transformation.

Note that if x = ei, an element of the canonical basis of RN , then
LQ(ei) is the vector qi given by the i-th column of the matrix Q. By abuse
of notation, we identify LQ with Q. Indeed, it can be shown that there
is a one to one correspondence between the vector space of linear trans-
formations L(N,M) = {L : RN → RM , linear} and the vector spaces of
matrices SM×N . In fact, given a linear transformation L, the correspond-
ing matrix have elements aij = ξi · L(ej) with ξi the canonical bases in RN
= 1, . . .M, j = 1, . . . , N . This correspondence respects the structure of vec-
tor spaces, so that it is actually an isomorphism of vector spaces. For M = 1
this is the same as the isomorphism between RN and its dual space (RN )?.

Composition of linear transformations correspond to product of matri-
ces, i.e. LQ ◦ LP = LQP .

It is worthwhile to note that given two different bases of a finite dimen-
sional vector space V , then there exist a linear transformation which brings
the vectors of one basis on the vectors of the other basis, and vice versa, so
that it is an invertible transformation. To this transformation it corresponds
an invertible square matrix, the inverse of which relates the coordinates of
the first basis the the coordinates of the second.

Two (square) matrices Q and Q′ associated to the same linear transfor-
mation of V in itself are said similar. Analytically, two (square) matrices
Q and Q′ are s similar if there exists an invertible matrix C (the matrix of
the change of basis in V ) such that Q′ = C−1QC.
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The image of Q is

R(Q) = {y ∈ RN such that ∃x ∈ RM : y = Qx}

The linearity implies thatR(Q) is a vector subspace of RN . Let {q1, q2, . . . , qN}
be the columns of the matrix, they are vectors of RM . Since LQ(ei) = qi,

for i = 1, . . . , N and the set ei generates RN , then R(Q) is a subspace of
RM generated by {q1, q2, . . . , qN}. We define the rank of Q as the dimension
rk(Q) of the vector space R(Q), that is the maximum number of linearly
independent column vectors of Q.

The kernel of the matrix Q is a vector subspace of RN defined by

N (Q) = {x ∈ RN : Qx = 0}

It .

Proposition 1.4. We have

i) rk(Q) = rk(QT )
ii rk(Q) + dim(ker(Q)) = N

Theorem 1.5. Let Q be a square real N×N matrix . Then the following
statements are equivalent:

i) Q is invertible.
ii) det Q 6= 0
iii) rk(Q) = N .
iv) The vectorial equation Qx = 0 has only the trivial solution x = 0
v) The vectorial equation Qx = b has exactly one solution for each

b ∈ RN .

Moreover

Proposition 1.6.

N (Q) = R⊥(QT )

Proof. If x ∈ N (Q), then (QT y) · x = yQx = 0, ∀y ∈ RN , hence
x ∈ R⊥(QT ).

If x ∈ R⊥(QT ), then 0 = QT y · x = yQx,∀y, hence x ∈ N (Q). �

4. System of linear equations.

A solution of a linear system Ax = b is an assignment of values to the
variables x1, x2, ..., xN such that Ax = b. A linear system may behave in
any one of three possible ways:

(1) The system has infinitely many solutions.
(2) The system has a single unique solution.
(3) The system has no solution.

.....
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5. Scalar products

Let x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN . The usual scalar product in
RN is a real number defined by

x · y = x1y1 + · · ·+ xNyN .

The scalar product is a bilinear form as a function in the vectorial variables
x and y, that is:

for any x, y, z ∈ RN , λ ∈ R
x · y = y · x, (x+ y) · z = x · z + y · z, λx · y = λx · y.

Moreover, the scalar product is positive definite:

x · x ≥ 0 and x · x = 0 ⇐⇒ x = 0.

We can define the modulus or norm of x ∈ RN associated to the standard
scalar product:

‖x‖ =
√
x · x =

√
x2

1 + x2
2 + . . . x2

N .

It holds
‖λx‖ = |λ| ‖x‖.

We have the Cauchy-Schwartz inequality connecting scalar product and
norms of vectors:

|x · y| ≤ ‖x‖‖y‖,
with equality if and only if the vectors are proportional, i.e y = λx. It
follows the triangular inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

6. Symmetric matrices

A symmetric matrix Q is said nonnegative (respectively, nonpositive) if
the quadratic form xTQx is positive (respectively, negative) semi-definite,
i.e. if

xTQx =

N∑
i,j=1

qi,jxixj ≥ 0 (respectively, xTQx ≤ 0, ) ∀x ∈ RN

and positive (respectively, negative) if the quadratic form xTQx is positive
(respectively, negative) definite

xTQx =
N∑

i,j=1

qi,jxixj 0 (xTQx < 0) ∀x ∈ RN , x 6= 0.

Example 6. An example of positive matrix is

(1.6) I =

( 1 . . . 0
... 1

...
0 . . . 1

)
since xT Ix = x2

1 + · · · + x2
N > 0 for x = (x1, . . . , xN ) 6= 0. An example of

nonnegative matrix is

(1.7) Q =

(
2 0
0 0

)
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while an indefinite matrix is

(1.8) Q =

(
1 0
0 −2

)
If we restrict the analysis to 2× 2 matrices, then the have the following

Proposition 1.7. Let

(1.9) Q =

(
q11 q12

q21 q22

)
a symmetric matrix. Then

If detQ > 0 and

{
q11 > 0 then Q is positive

q11 < 0 then Q is negative

If detQ = 0 and

{
q11, q22 ≥ 0 then Q is nonnegative

q11, q22 ≤ 0 then Q is nonpositive

If detQ < 0, then Q is indefinite

Remark. We can introduce a partial order in the set of symmetric
matrices in the following way

Q ≤ P ⇐⇒ P −Q ≥ 0.

7. Exercises

1. Show that

‖x+ y‖2 = ‖x‖2 + 2x · y + ‖y‖2 for allx, y ∈ RN ,

2. Show that

xy ≤ x2

2
+
y2

2
, for allx, y ∈ R

3. Show that

xy ≤ εx2 +
y2

4ε
, for allx, y ∈ R, ε > 0

4. Show that

|x · y| ≤ ε

2
‖x‖2 +

‖y‖2

2ε
, for allx, y ∈ RN , ε > 0.

Hint:
0 ≤ ‖x± εy‖2 = ‖x‖2 ± 2εx · y + ε2‖y‖2,

5. Using exercise 4, show the Cauchy-Schwartz inequality

(1.10) |x · y| ≤ ‖x‖‖y‖ for allx, y ∈ RN ,

6. Show that equality in (1.10) holds if and only if the vectors are propor-
tional.
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8. Inequalities

Given N real numbers x1, x2, · · ·xN , we define their arithmetic mean as

Ma =
x1 + x2 + · · ·+ xN

N
=

∑N
i=1 xi
N

and their geometric mean as

Mg =
N√
x1 · x2 · · ·xN =

N

√√√√ N∏
i=1

xi

Theorem 1.8 (Mean Inequality). Given N real positive numbers x1,
x2, · · ·xN

Mg =
N

√√√√ N∏
i=1

xi ≤
∑N

i=1 xi
N

= Ma.

Equality holds if and only if x1, x2, · · ·xN are equal.

Proof. By induction

i) If N = 1 the inequality is true since

Ma = x1 = Mg.

ii) Assuming the inequality true at step N − 1

M ′g =
N−1

√√√√N−1∏
i=1

xi ≤
∑N−1

i=1 xi
N − 1

= M ′a,

then we have

Ma =
(N − 1)

N
M ′a +

xN
N

=

(
M ′a +

(xN −M ′a)
N

)
,

Ma

M ′a
=

(
1 +

xN −M ′a
M ′a

1

N

)
hence (

Ma

M ′a

)N
=

(
1 +

xN −M ′a
M ′a

1

N

)N
To apply Bernoulli’s inequality (i.e. (1 + q)N ≥ 1 +Nq for q > −1) we need
−M ′a + xN ≥ −NM ′a that is

(N − 1)M ′a + xN ≥ 0,

which is true since M ′a, xN ≥ 0. Then(
Ma

M ′a

)N
≥
(

1 +
xN −M ′a
M ′a

)
=
xN
M ′a

(Ma)
N ≥ xN (M ′a)

N−1,

and by the inductive step

(Ma)
N ≥ xN (M ′g)

N−1 = x1 · x2 . . . xN =
N∏
i=1

xi.

�
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We define conjugate exponents two positive real numbers p and q such
that

(1.11)
1

p
+

1

q
= 1

Theorem 1.9 (Young Inequality). For all conjugate exponents p, q ∈ R
and any nonnegative real numbers x, y

(1.12) xy ≤ xp

p
+
yq

q

Proof. Consider first the case p, q ∈ Q. Then p = n
m with m,n ∈ N

with m < n and

q =
n

n−m
.

Then by taking

x1 = x2 = · · · = xm = |x|p

xm+1 = · · · = xN = |y|q

in (1.8), we get the inequality (1.12). For p, q ∈ R, we get the inequality by
the density of Q in R. �

Remark. An alternative proof of (1.12) can be done by using the con-
vexity of the function x→ ex. In fact

xy = elnx+ln y = e
1
p

lnxp+ 1
q

ln yq ≤ 1

p
elnxp +

1

q
elnxq =

xp

p
+
xq

q

Theorem 1.10 (Hölder inequality). For any conjugate exponents p, q ∈
[1,+∞) and for any x, y ∈ RN we have

(1.13) |x · y| ≤ ‖x‖p‖x‖q.

For the proof of the inequality we refer to [?]. In particular, for q = p = 2
(1.13) gives the Cauchy-Schwartz inequality (1.10).

Theorem 1.11 (Minkowski inequality). For any p ∈ [1,+∞) and for
any x, y ∈ RN we have

(1.14) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

An immediate consequence of (1.14) is

Corollary 1.12. For any p ∈ [1,+∞),

(1.15) ‖x‖p =
( N∑
i=1

|xi|p
) 1

p x ∈ RN

defines a norm in RN .
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8.1. Exercises. 1. Show that the sequence (xN ) defined by

xN =
(

1 +
1

N

)N
, N = 1, 2, . . . .

is bounded and increasing.
Solution. Applying the inequality (1.8)

n+1
√
a1 . . . aN+1 ≤

a1 + · · ·+ aN+1

N + 1

with

a1 = · · · = an = 1 +
1

N
and aN+1 = 1,

we obtain
N+1

√(
1 +

1

N

)N
≤ N + 2

N + 1
= 1 +

1

N + 1
.

This is equivalent to xN ≤ xN+1. Hence (xN ) is increasing.

2. Show that
N(N+1)

2

√√√√ N∏
i=1

1

ii

is the minimum value of the function

f(x1, x2, . . . , xN ) =
x1

x2
+

√
x2

x3
+ · · ·+ N

√
xN
x1
, x1, x2, xN > 0

.

3. The harmonic mean of N real positive numbers x1, x2, · · ·xN is

Mh = N

(
1

x1
+

1

x2
+ · · ·+ 1

xN

)−1

= N

( N∑
i=1

1

xi

)−1

Prove by induction the following

Theorem 1.13. Given N real positive numbers x1, x2, · · ·xN

Mh = N

( N∑
i=1

1

xi

)−1

≤
N

√√√√ N∏
i=1

xi = Mq

Equality holds if and only if x1, x2, · · ·xN are equal.

4. Using (1.8) solve the minimization problem: find the minimum of

f(x1, x2, · · ·xN ) =
x1 + x2 + · · ·+ xN

N
,

under the condition xi ≥ 0 i= 1, . . . , N and x1x2 · · ·xN = 1.

5. Using (1.13) solve the minimization problem: find the minimum of

f(x1, x2, · · ·xN ) =
1

x1
+

1

x2
+ · · ·+ 1

xN
under the condition N ≥ 2 xi > 0 i= 1, . . . , N and x1x2 · · ·xN = 1.





CHAPTER 2

Optimization in RN

We denote by B(x, r) the ball of center x ∈ RN and radius r > 0, that
is B(x, r) = {y ∈ RN : ‖y − x‖ ≤ r},

Definition. Given a set Ω, we say that x ∈ RN is an accumulation
point for Ω if there exists a sequence (xn) such that xn ∈ Ω, xn 6= x and
limn→∞ ‖xn−x‖ = 0. Equivalently, if for any δ > 0, there exists y 6= x such
that y ∈ Ω ∩B(x, δ).

1. Liminf and limsup

Given a sequence (xn) we define

lim inf
n→+∞

xn = lim
n→+∞

(
inf
m≥n

xm
)

lim sup
n→+∞

xn = lim
n→+∞

(
sup
m≥n

xm
)

Observe that in the set of the extended real number R = R∪{±∞}, the lim
inf and lim sup always exist. Moreover the sequence (xn) admits limit ` if
only if lim supn→+∞ xn = lim infn→+∞ xn = `.

Example 7. The sequence xn = (−1)n does not admit limit, while

lim inf
n→+∞

xn = −1 lim sup
n→+∞

xn = 1.

Given a function f : Ω→ R and an accumulation point x of Ω, we define
the liminf and limsup of function f at x as

(2.1) lim inf
y→x

f(y) = sup
r

inf
y∈B(x,r)\{x}

f(y)

(2.2) lim sup
y→x

f(y) = inf
r

sup
y∈B(x,r)\{x}

f(y)

Definition. We say that a function

i) f : Ω → R ∪ {+∞} is lower semi-continuous (lsc) at x ∈ Ω if for
any sequence (xj) ⊂ Ω converging to x as j → +∞ we have

f(x) ≤ lim inf
j

f(xj).

Moreover f is lsc in Ω if it is lsc at x for all x ∈ Ω.
ii) A f : Ω → R ∪ {−∞} is upper semi-continuous (usc) at x ∈ Ω if

for any sequence (xj) ⊂ Ω converging to x we have

f(x) ≥ lim sup
j

f(xj).

Moreover f is usc in Ω if it is usc at x for all x ∈ Ω.

15
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iii) f : Ω→ R is continuous at x if for any sequence (xj) ⊂ Ω converg-
ing to x we have

f(x) = lim
j
f(xj).

Moreover f is continuous in Ω if it is continuous at x for all x ∈ Ω

Notice that f is lsc if and only if f(x) = lim infy→x f(y), ∀x ∈ Ω. Moreover
a function f is continuous at x (in Ω) if and only is lower and upper semi-
continuous is continuous at x (in Ω).

Remark. The continuity of f at x is equivalent to

f(x+ h) = f(x) + ω(h)

with ω(h)→ 0 as h→ 0.

.

2. Compact sets and Weierstrass theorem

Definition. A set of Ω ⊂ RN is said compact if every open cover
has a finite subcover, i.e. for every arbitrary collection {Uα}α∈A such that
Ω = ∪α∈AUα, then there exists a finite set B ⊂ A such that Ω = ∪α∈BUα

Proposition 2.1. For any set of Ω ⊂ RN , the following three conditions
are equivalent:

i) Every open cover has a finite subcover.
ii) Every sequence in the set has a convergent subsequence, whose limit

point belongs to Ω (i.e., Ω is sequentially compact).
iii) Ω is closed and bounded.

Example 8. Example of compact sets in RN are: closed N -balls, N -
spheres, the Cantor set.

Definition. We say that

i) f(x0) is the minimum (respectively, maximum) of f in Ω iff

f(x0) ≤ f(x), ∀x ∈ Ω (respectively, f(x0) ≥ f(x) ∀x ∈ Ω) .

ii) f(x0) is a relative minimum (respectively, relative maximum) of f
in Ω iff there exists δ > 0 such that

f(x0) ≤ f(x), ∀x ∈ Ω∩Bδ(x0) (respectively, f(x0) ≥ f(x) ∀x ∈ Ω ∩Bδ(x0))

An important problem in the applications is to establish the extremal
value of a function. The Weierstrass’ theorem gives a condition for the
existence of minima and maxima.

Theorem 2.2 (Weierstrass). If f : Ω ⊂ RN → R is lower semi-continuous
(respectively, upper semi-continuous) and Ω is a compact set, then there ex-
ists the minimum (respectively, maximum) of f in Ω.

In particular, a continuous function admits maximum and minimum on
a compact set.
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Observe that without the compactness of the set Ω, existence of extremals
is not guarantee. For example arctanx is continuous and bounded in R, but
it does not admit maximum and minimum in R. On the other side existence
of extremal can happen even if the hypothesis of previous theorem are not
satisfied.

2.1. Minima in an unbounded set. We introduce a simple condition
to guarantee the existence of a minimum in an unbounded set.

Theorem 2.3. Let f : RN → R continuous, and

lim
|x|→+∞

f(x) = +∞,

there there exists x∗ such that f(x∗) = infRN f(x)

Example 9. The problem is to minimize

f(x) =
1

2
Qx · x+ px, inRN

with Q a N ×N positive definite matrix, and p ∈ RN .
Then f is continuous in all the space RN ,and, for any x 6= 0,we have

Qx · x = Q
x

|x|
|x| x
|x|
|x| = |x|2Q x

|x|
x

|x|
≥ 2c|x|2,

with c a positive constant. Then, by Cauchy Schwarz inequality

f(x) ≥ c|x|2 − |p||x|,
then the assumptions of (2.3) are verified and we can conclude that the
minimum exists. By the second order sufficient conditions(2.8) the unique
(by strong convexity) minimum point is given by x = −Q−1p.

Theorem 2.4. Let K 6= ∅ a closed, unbounded subset of RN . Let f :
K → R continuous, and

lim
|x|→+∞, x∈K

f(x) = +∞,

then there there exists x∗ such that f(x∗) = infK f(x)

Proof. To see this, fix x0 ∈ K, and say m = f(x0). Then we can fix a δ0

such that for all δ > δ0, f(x) > m. The setK0 = {x ∈ K such that |x| ≤ δ0

is closed and bounded, by Wierstrass theorem there exists a minimum m∗

on K0. Since x0 ∈ K, m ≤ m∗. This shows that m∗ is the global minimum,
since x0 was arbitrarily chosen in K. �

3. Necessary and sufficient conditions for extremals

By Df(x) we denote the gradient of f evaluate at x, i.e.

Df(x) =
( ∂f
∂x1

(x),
∂f

∂x2
(x), . . . ,

∂f

∂xN
(x)
)
.

We also recall the definition of directional derivate: if v ∈ RN and |v| = 1
the directional derivatives of f with respect to the direction v is

(2.3) Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
.
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In particular for v = ei, Dvf(x) = ∂f
∂xi

(x).
The differentiability of f at x means that the gradient exists and

(2.4) f(x) = f(x0) +Df(x0) · (x− x0) + o(‖x− x0‖),

where the Landau symbol o(h) means a real function such that limh→0
o(h)
|h| =

0. It is easy to see that if f is differentiable at x, then

Dvf(x) = Df(x) · v

Theorem 2.5 (First-Order Necessary Condition). Let Ω ⊂ RN and x0 ∈
Ω a minimizer of f in Ω. If f is differentiable at x0, then

(2.5) Df(x0) · (x− x0) ≥ 0, ∀x such that x ∈ Ω.

Proof. Follows by (2.4). �

We say that a point x0 is in the interior of Ω if there exists δ > 0 such that
B(x0, δ) ⊂ Ω. By Theorem 2.5 it immediately follows the Fermat theorem

Corollary 2.6 (Fermat). Let Ω ⊂ RN and x0 ∈ Ω a minimizer of f
in Ω. If f is differentiable at x0 and x0 is in the interior of Ω, then

Df(x0) = 0.

If f admits second order partial derivates in Ω, we associate to f its
Hessian matrix

(2.6) D2f(x) =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xN

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xN

...
... · · ·

...
∂2f

∂xN∂x1
∂2f

∂xN∂x2
· · · ∂2f

∂xN∂xN


Theorem 2.7 (Second-Order Necessary Condition). Let Ω ⊂ RN and

f ∈ C2(Ω). If x0 ∈ Ω is a local minimum point (respectively, local maximum
point) of f in the interior of Ω, then

D2f(x0) ≥ 0 (respectively D2f(x0) ≤ 0).

Proof. If f is a C2(Ω) and x0 is in the interior of Ω, by second order
Taylor’s expansion at x0 we have
(2.7)

f(x) = f(x0)+Df(x0) · (x−x0)+
1

2
(x−x0)TD2f(x0)(x−x0)+o(‖x−x0‖2)

for x → x0. The statement follows immediately observing that if x0 is a
local minimum point, then Df(x0) = 0 and therefore

0 ≤ f(x)− f(x0) ≤ 1

2
(x− x0)TD2f(x0)(x− x0)

for x close to x0. �

Theorem 2.8 (Second-Order Sufficient Condition). Let Ω ⊂ RN and
f ∈ C2(Ω). If x0 ∈ Ω is in the interior of Ω and

Df(x0) = 0, D2f(x0) > 0, (respectively D2f(x0) < 0)

then x0 is a (strict) local minimum (respectively, local maximum) of f in Ω.
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Proof. The proof follows immediately by (2.7) �

Remark. If N = 2, then for x = (x1, x2)

(2.8) D2f(x) =

 ∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x22

(x)


By Prop.1.7, we get the 2nd order necessary conditions

D2f(x0) ≥ 0 ⇐⇒ det(D2f) ≥ 0 and
∂2f

∂x2
1

(x0) ≥ 0,

D2f(x0) ≤ 0 ⇐⇒ det(D2f) ≥ 0 and
∂2f

∂x2
1

(x0) ≤ 0,

and 2nd order sufficient ones

D2f(x0) > 0 ⇐⇒ det(D2f) > 0 and
∂2f

∂x2
1

(x0) > 0

D2f(x0) < 0 ⇐⇒ det(D2f) > 0 and
∂2f

∂x2
1

(x0) < 0

4. Necessary and sufficient conditions in weak form

In many applications, the requirement of differentiability is a too strong
assumption which is not satisfied by the data of the problem. The following
lemma is the basis for the introduction of a weak notion of gradient.

Lemma 2.9. Assume f : RN → R is a continuous function and it is
differentiable at x0. Then there exists φ ∈ C1(RN ) such that f(x0) = φ(x0)
and f − φ has a strict local minimum at x0.

Proof. Replacing u by v(x) = f(x+ x0)− f(x0)−Df(x0) · x we may
assume w.l.o.g.

x0 = 0, f(0) = Df(0) = 0.

Then
f(x) = |x|f1(x),

with f1(x) : RN → R a continuous function such that f1(0) = 0. Then we
set

f2(|x|) = inf
|y|≤|x|

|f1(y)|

We have f2 : [0,+∞)→ [0,+∞), continuous and non increasing. Define

(2.9) φ(x) =

∫ |2x|
|x|

f2(t)dt− |x|2.

By (2.9) φ(0) = Dφ(0) = 0 (|φ(x)| ≤ |x|f2(|x|) − |x|2), and for any x 6= 0
the gradient can be computed

Dφ(x) =
2x

|x|
f2(|2x|)− x

|x|
f2(|x|)− 2x.

Moreover if x 6= 0

f(x)− φ(x) ≥ |x|2 > 0 = f(0)− φ(0),
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hence φ has the required properties. �

Definition. Given a function f : Ω→ R and x ∈ Ω,

i) the super-differential of f in x is the set

D+f(x) := {p ∈ RN : f(x+ h) ≤ f(x) + ph+ o(|h|), h→ 0}.
ii) the sub-differential of f in x is the set

D−f(x) := {p ∈ RN : f(x+ h) ≥ f(x) + ph+ o(|h|), h→ 0}.

The notions of super-differential and sub-differential allow us to gen-
eralize some basic results about differentiable functions. For example we
have

Proposition 2.10. Let f : Ω→ R be a function and x ∈ Ω.
(i) If f has a local maximum in x, then 0 ∈ D+f(x).
(ii) If f has a local minimum in x ∈ Ω, then 0 ∈ D−f(x).

Proof. If f has a local maximum at x ∈ Ω, then f(x + h) − f(x) ≤ 0
for every h, close to zero. Hence

f(x+ h) ≤ f(x) + 0 · h+ o(|h|)
for h→ 0 and thus 0 ∈ D+f(x). The other case is similar. �

The weak form of Theorem 2.5 is the following

Theorem 2.11 (Weak First-Order Necessary Condition). Let Ω ⊂ RN
and x0 ∈ Ω be a minimizer of f in Ω. If f is lsc at x0 , then there exists
a function φ ∈ C1(Ω) such that f(x0) = φ(x0), x0 is minimizer for φ in Ω
and

Dφ(x∗) = 0, ∀x such that x− x∗ ∈ Ω.

Proof. Replacing u by v(x) = f(x+ x0)− f(x0)− p · x we may assume

x0 = 0, f(0) = p = 0.

Then the condition 0 ∈ D−f(x) is equivalent to

f(x) ≥ |x|f1(x),

with f1(x) : RN → R and f1 → 0 as x→ 0. Then we set

f2(|x|) = inf
|y|≤|x|

|f1(y)|

We have f2 : [0,+∞)→ [0,+∞) f2 ≤ f1, f2 non increasing and

f(x) ≥ |x|f2(x),

near 0. Then we take and

(2.10) φ(x) =

∫ 2|x|

|x|
f2(t)dt− |x|2.

By (2.9) φ(0) = Dφ(0) = 0 (|φ(x) ≤ |x|f2(|x|)− |x|2), and for any x 6= 0 the
gradient can be computed

Dφ(x) =
2x

|x|
f2(|2x|)− x

|x|
f2(|x|)− 2x.
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Moreover if x 6= 0

f(x)− φ(x) ≥ |x|2 > 0 = f(0)− φ(0),

hence φ has the required properties. �

An important tool to obtain this type of results is the Dini’s Theorem.

5. Dini’s theorem

Let f : I ⊂ R2 → R be a function defined in an open set I and consider
the equation

(2.11) f(x, y) = 0.

In many applications, it is important to transform the implicit relation be-
tween x and y given by f in an explicit one of the type y = φ(x). The
Dini’s Implicit Function Theorem states that this is possible under some
mild assumptions on f and its partial derivates.

Theorem 2.12. Let f : I ⊂ RN × R→ R be a C1 function in the open
set I and (x0, y0) ∈ I where x0 = (x0

1, . . . , x
0
N ) and y0 ∈ R. If

• f(x0, y0) = 0
• fy(x0, y0) 6= 0,

there exists δ, k > 0 such that defined I1 = {x ∈ RN : |x − x0
i | ≤ δ, i =

1, . . . , N}, I2 = (y0 − k, y0 + k), then for any x ∈ I1, there exists a unique
y ∈ I2 such that (2.11) is satisfied. It is therefore defined a function φ :
I1 → I2 such that

• y0 = φ(x0);
• f(x, φ(x)) = 0 for any x ∈ I1;
• φ ∈ C1(I1) and

(2.12) φxi(x) = −fxi(x, φ(x))

fy(x, φ(x))
∀x ∈ I1, i = 1, . . . , N.

Proof. For simplicity we give a direct proof for the case N = 2. The
general case can be proved by a fixed point argument.

We assume w.l.o.g. that fy(x0, y0) > 0, hence there exists R = [x0 −
h, x0 +h]× [y0−k, y0 +k] such that fy(x, y) > 0 for any (x, y) ∈ R. It follows
that for any fixed x̄ ∈ [x0−h, x0 +h], the function f(x̄, y), y ∈ [y0−k, y0 +k]
is strictly increasing.
In particular, for x̄ = x0, since f(x0, y0) = 0, we have f(x0, y0 − k) < 0 and
f(x0, y0 + k) > 0. By the continuity of the functions f(·, y0 ± k), we can
determine δ > 0 such that f(x, y0 − δ) < 0 and f(x, y0 + δ) > 0 for any
x ∈ (x0 − δ, x0 + δ).
We conclude that for any x ∈ (x0 − δ, x0 + δ), the function f(x, ·) for y ∈
[y0−k, y0 +k] is strictly increasing and such that f(x, y0−k)f(x, y0 +k) < 0.
By the intermediate value theorem, for any x ∈ (x0− δ, x0 + δ), there exists
a unique y ∈ (y0 − k, y0 + k) such that f(x, y) = 0.
Now define the function φ : I1 → I2 by associating to x the unique y such
that f(x, y) = 0. Hence y0 = φ(x0) and g(x, φ(x)) = 0 for any x ∈ I1. Let
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us show that φ is C1 and (2.14). Given x ∈ I1, consider an increment ∆x
such that x+ ∆x ∈ I1 and set ∆φ = φ(x+ ∆x)− φ(x). We have

f(x+ ∆x, φ(x) + ∆φ)− f(x, φ(x)) = 0.

By Lagrange formula we have that there exist θ ∈ [0, 1] such that

fx(x+ θ∆x, φ(x) + θ∆φ)∆x+ fy(x+ θ∆x, φ(x) + θ∆φ)∆φ = 0.

If ∆x is sufficiently small in such a way that (x+ ∆x, φ(x) + ∆φ) ∈ R, then
fy(x+ θ∆x, φ(x) + θ∆φ) 6= 0 and therefore

(2.13) ∆φ = −fx(x+ θ∆x, φ(x) + θ∆φ)

fy(x+ θ∆x, φ(x) + θ∆φ)
∆x.

Since f ∈ C1 and R is compact, there exist m, M > 0 such that

fy(x, y) ≥ m, |fx(x, y)| ≤M |qquad∀(x, y) ∈ R.
Hence by (2.13) we get

|∆φ| ≤ M

m
|∆x|

and therefore lim∆x→0 ∆φ = 0, giving the continuity of φ in I1. For ∆x 6= 0,
by (2.13) we get

∆φ

∆x
= −fx(x+ θ∆x, φ(x) + θ∆φ)

fy(x+ θ∆x, φ(x) + θ∆φ)

and therefore for ∆x→ 0 we get the derivability of φ and (2.11) �

Remark. Exchanging the role of x and y, we get that if f(x0, y0) = 0
and fx(x0, y0) 6= 0, then there exists a neighborhood J1 of y0 and a function
ψ such that y0 = ψ(x0), g(ψ(y), y) = 0 for any y ∈ J1, ψ ∈ C1(J1) and

ψ′(x) = − fy(ψ(y),y)
fx(ψ(y),y) for all y ∈ J1.

Remark. If f ∈ Ck(I), then it is possible to prove that φ ∈ Ck(I1).
By applying the chain rule for the relation f(x, φ(x)) = 0 it is possible to
deduce a formula for all the derivatives of the function φ. For n = 2 we get

φ′′(x) = −
fxxf

2
y − 2fxyfxfy + fyyf

2
y

f3
y

.

Since in general the function φ is not known explicitly, with the aid of the
formulas for its derivatives, we can write a Taylor expansion of the function
φ near the point x0.

We conclude this section with a vectorial version of the Dini’s implicit
function theorem. We recall that for a function f : RN → RM , f =
(f1, . . . , fM ), the Jacobian matrix Jf(x0) at x0 is the M×N matrix defined
by

Jf(x0) =
∂(f1, . . . , fM )

∂(x1, . . . , xN )

∣∣∣∣
x0

=


∂f1
∂x1

(x0) ∂f1
∂x2

(x0) · · · ∂f1
∂xN

(x0)
...

... · · ·
...

∂fM
∂x1

(x0) ∂fM
∂x2

(x0) · · · ∂fM
∂xN

(x0)


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Theorem 2.13. Let f : I ⊂ RN × RM → RM be a C1 function in the
open set I and (x0, y0) ∈ I where x0 = (x0

1, . . . , x
0
N ) and y0 = (y0

1, . . . , y
0
M ).

If

• f(x0, y0) = 0
• det[Jyf ]|(x0,y0) 6= 0 (Jyf is the Jacobian of f with respect to y)

there exist open neighborhoods Ax0 of x0in RN and By0 of y0 in RM such
that for x ∈ Ax0, the equation f(x, y) = 0 admits a unique solution y ∈ By0.
It is therefore defined a function φ : Ax0 → By0 such that

• y0 = φ(x0);
• f(x, φ(x)) = 0 for any x ∈ Ax0;
• φ ∈ C1(Ax0 , By0) and

(2.14)
∂φi
∂xj

(x) = −
det
(
∂(f1,...,fi,...,fM )
∂(y1,...,xj ,...,yM )

)
(x,φ(x))

det
(
∂(f1,......,fM )
∂(y1,......,yM )

)
(x,φ(x))

for all x ∈ Ax0, i = 1, . . . , N, j = 1, . . . ,M .

6. Extremals under state constraints

As we have seen in the previous sections, we have necessary and sufficient
conditions to study extremals in the interior of a given set. In this section
we look for (necessary) conditions for extremals on the boundary of a set.
Let N = 2 and consider a function g ∈ C1(I), where I is an open set. Define
the set

Z = {(x, y) ∈ R2 : g(x, y) = 0}
and assume that Z 6= ∅. Let f : I → R be a C1 function and assume
that there exists a point (x0, y0) ∈ Z such that gy(x0, y0) 6= 0 and (x0, y0)
is a local minimum [maximum] point of f relatively to the constraint Z,
i.e. there exists a neighborhood U of (x0, y0) such that f(x0, y0) ≤ f(x, y)
[f(x0, y0) ≥ f(x, y)] for any (x, y) ∈ U ∩ Z.
Arguing formally, by the implicit function theorem, we have that for some
function φ ∈ C1(I1), with I1 a suitable neighborhood of x0, the constraint Z
can be described near x0 as the set {(x, y) : x ∈ I1, y = φ(x)} and moreover
x0 is an extremal point of f(x, φ(x)) in I1. Hence by the chain rule and
y0 = φ(x0) we get

(2.15) fx(x0, y0) + fy(x0, y0)φ′(x0) = 0.

On the other hand, by Dini’s theorem

φ′(x0) = −gx(x0, y0)

gy(x0, y0)
.

Substituting in (2.15), we get the necessary condition for the extremum

fx(x0, y0)− fy(x0, y0)
gx(x0, y0)

gy(x0, y0)
= 0.

If also gx(x0, y0) 6= 0 then setting

λ∗ = −fy(x0, y0)

gy(x0, y0)
= −fx(x0, y0)

gx(x0, y0)
,
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the conditions for f having an extremal point under the constraint Z are

(2.16)

{
Df(x0, y0) + λ∗Dg(x0, y0) = 0,

g(x0, y0∗) = 0

The previous formal approach to the existence of extreme under constraints
will be made rigorous in the next Lagrange Multiplier Theorem.

More generally, we consider the problem of minimizing [maximizing] a
function subject to some constraints, i.e. the problem to minimize [max-
imize] f for when the variable x satisfy a constraint g(x) = 0 for some
function g : RN → RM , M < N .

Theorem 2.14. Let I an open subset of RN , f : I → R, g : I → RM ,
C1 functions in I and x0 ∈ I. If there exists an open neighborhood U of x0

in RN such that

f(x) ≤ f(x0) [f(x) ≥ f(x0)] ∀x ∈ U ∩ {x ∈ I : g(x) = 0}

then there exist µ, λ = (λ1, . . . , λM ), not both zero, such that

(2.17)

µ
∂f
∂xi

(x0) +
∑M

j=1 λj
∂gj
∂xi

(x0) = 0, i = 1, . . . ,M

gi(x0) = 0, i = 1, . . . ,M

Remark. It is worthwhile to remark that the Lagrange conditions (2.17)
are necessary but not sufficient for x0 being an extremal point of f under
the constraint g(x) = 0. For sufficient conditions as usual is necessary to
introduce inequality involving the second order derivatives of f and g.

Corollary 2.15. Under the same assumptions of Theorem 2.14, if
Jg(x) (the Jacobian matrix of g) has rank M at x0, then there exists a
unique λ ∈ RM such that

(2.18)


∂f
∂xi

(x0) +
∑M

j=1 λj
∂gj
∂xi

(x0) = 0, i = 1, . . . ,M

gi(x0) = 0, i = 1, . . . ,M

Remark. Note that the first condition in (2.18) can be reformulated by

saying that the function F (x) = f(x) +
∑M

j=1 λjgj(x) satisfies DF (x0) =

0. Moreover observe that (2.18) is a system of N + M equation in the
N + M unknowns (x0

1, . . . , x
0
N ), the coordinate of the extremal point, and

(λ1, . . . , λM ), the Lagrange multiplier.

Proof of Theorem 2.14. Let us consider the application

φ : I × R→ RM+1

(x, u)→ φ(x, u) = (f(x)− f(x0) + u, g1(x), . . . , gM (x)).

The map φ is C1 in I × R and φ(x0, 0) = 0. We claim that the Jacobian
matrix of the function F (x) = (f(x), g1(x), . . . , gm(x)) cannot have rank
M + 1.In fact, assume for example that

det

{
∂(f, g1, . . . , gM )

∂(x1, . . . , xM+1)

}
x0

6= 0.
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Then, defined f̃(x, u) = f(x)− f(x0) + u, since

det

{
∂(f, g1, . . . , gM )

∂(x1, . . . , xM+1)

}
x0

= det

{
∂(f̃ , g1, . . . , gM )

∂(x1, . . . , xM+1)

}
x0

6= 0

by the Dini’s Theorem 2.13 we get that in the equation φ(x, u) = 0 we can
be explicit the variable (x1, . . . , xM+1) with respect to the other variables
in a neighborhood of (x0, 0).

If we therefore set ξ = (xM+2, . . . , xN ), η = (x1, . . . , xM+1), ξ0 =
(x0
M+2, . . . , x

0
N ) and η = (x0

1, . . . , x
0
M+1), we get that there exist δ > 0

and open neighborhoods A of ξ0 in RN−M−1 and B of η0 in RM+1 and a
function φ : A × (−δ, δ) → RM+1 such that for any (ξ, u) ∈ A × (−δ, δ),
φ(x, u) ∈ B and

f(φ(ξ, u), ξ)− f(x0) + u = 0

gi(φ(ξ, u), ξ) = 0 i = 1, . . . ,M

If we take A and B sufficiently small in such a way that A × B ⊂ U , then
(φ(ξ, u), ξ) ∈ U and

f(φ(ξ, u), ξ) = f(x0)− u
{
< f(x0), if u > 0;
> f(x0), if u < 0.

giving a contradiction to the existence of an extremal point in x0. Hence

the matrix
{
∂(f,g1,...,gM )
∂(x1,...,xN )

}
x0

cannot have full rank. Therefore the vectors

( ∂f∂x1 (x0), . . . , ( ∂f
∂xN

(x0), ( ∂gi∂x1
(x0), . . . , ( ∂gi

∂xN
)(x0), i = 1, . . . ,M given by its

rows are linear dependent in RN and we get the first condition in (2.17), the
second one expressing the condition that x0 is on the constraint. �

Proof of Corollary 2.15. Consider the homogeneous linear system
in the unknown z = (z1, . . . , zM )

(2.19)
M∑
j=1

zj(
∂gj
∂xi

)(x0) = 0 i = 1, . . . , N

Since[Jg(x0)] has rank M , then the linear system admits only the null so-
lution. If µ = 0 in (2.17), we should have also λ = 0 and therefore a
contradiction since µ and λ cannot be both null. Hence we can divided by
µ the first equation in (2.17) to get the first equation in (2.18). Uniqueness
of λ follows again by det[Jg(x0)] 6= 0. �

Example 10 (Minima in an affine set). Given x, b ∈ RN and an N ×N
matrix A, f real and convex in RN

Minimize f(x); such that Ax = b.

The condition Df(x∗) ∈ R(AT ) can be obtained following the optimality
conditions (see (2.5))

Df(x∗)(x− x∗) ≥ 0, ∀x verifyingAx = b.

Then x = x∗ + v, v ∈ N (A) we get Df(x∗)v = 0, v ∈ N (A). Since
N (A) = R(AT ), the above condition means Df(x∗) ∈ R(AT ). Applying
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the Lagrange condition (2.17) we find that there exists λ ∈ RN such that

(2.20)

{
Df(x∗) +ATλ = 0,

Ax∗ = b,

giving again Df(x∗) ∈ R(AT ).



CHAPTER 3

Convex functions

1. Convex set

Definition. A set Ω ⊂ RN is said convex if for any x and y ∈ Ω,

λx+ (1− λ)y ∈ Ω for any λ ∈ [0, 1].

The previous definition says that if Ω contains x and y, then it contains
the segment of vertices x and y. A ball BR(x) is a convex set, while the
annulus BR(x) \Br(x) is not a convex set.

Given y1, . . . , yk ∈ RN and k non negative numbers λ1, λ2, . . . , λk such
that

∑N
k=1 λk = 1, we consider the convex combination

y = λ1y1 + λ2y2 + . . . λkyk.

Definition. Given a set Ω, the convex hull of Ω, co(Ω) is smallest
convex set containing Ω. Equivalently, co(Ω) is the set obtained by all the
possible convex combinations of points in Ω, i.e.

co(Ω) = {
∑
i

λixi : xi ∈ Ω, λi ≥ 0,
∑
i

λi = 1}

A fundamental theorem, due to Caratheodory, say that the convex hull
of a set can be obtained by taking the all the convex combinations of a finite
number of points in Ω. The following result say that two disjoint convex
sets can be always separated by an hyperplane

Theorem 3.1 (Separation theorem). Let C1 and C2 be two convex sets
⊂ RN such that int(C1) ∩ C2 = ∅ (where int denotes the set of the interior
points). Then there exists p ∈ RN , p 6= 0, such that

(3.1) py ≥ px, ∀x ∈ C1, y ∈ C2

2. Convex and concave functions

Definition. Let C be an open, convex. A function f : C → R is said
to be

i) convex if

(3.2) λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) ∀x, y ∈ C, λ ∈ [0, 1].

Moreover is said strictly convex if a strict inequality holds in (3.3)
for λ ∈ (0, 1)

ii) concave if −f is convex, i.e.

(3.3) λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y) ∀x, y ∈ C, λ ∈ [0, 1].

27



28 3. CONVEX FUNCTIONS

Note that affine functions in RN are convex and concave, while an ex-
ample of strictly convex function is f(x) = ‖x‖2. The function in f : R→ R
defined by

(3.4) f(x) =

{
|x|2, x ≥ 0,

|x| x < 0

is convex, but not strictly convex.
For regular functions we have characterizations of convexity by means

of the derivatives of the function.

Proposition 3.2. Let f : C → R, where C is a convex subset of RN .
Then:

i) If f ∈ C1(C), then f is convex in C if and only if

(3.5) f(y)− f(x) ≥ Df(x)(y − x)foranyx, y ∈ C.
ii) If f ∈ C2(C), then f is convex in C if and only if D2f(x) ≥ 0 for

any x ∈ C.

Proof. �

In optimization theory, it is important to establish the uniqueness of
minimum points.

Proposition 3.3. Let C ⊂ RN be a convex set and f : C → R be a
strictly convex function. Then every local minimum point is global.

Proof. Assume by contradiction that there exist x∗ local minimum
point which is not global. Then then there exists δ > 0 such that

f(x∗) ≤ f(x), ∀x ∈ C ∩Bδ(x∗)
and, for some x̂, f(x̂) < f(x∗). Since x̂ 6= x∗, we take λ ∈ (0,min{1, 1

|x̂−x?|}
and xλ = λx̂+ (1− λ)x∗. Then

f(xλ) ≤ λf(x̂) + (1− λ)f(x∗) < λf(x∗) + (1− λ)f(x∗) = f(x∗),

contradicting the assumption that x∗ is a local minimum point. �

Example 11. Let D 6= ∅ a closed, compact subset of RN and x ∈ RN .
Consider the following constrained minimization problem:

Find ŷ ∈ D such that ‖ŷ − x‖ = inf
y∈D
‖ŷ − x‖.

As an application of the Weierstrass theorem, we see that the minimum of
f(y) = ‖ŷ − x‖ on D is attained, say at y∗ ∈ D. We define the distance of
x from D the quantity

dD(x) = ‖x− y∗‖.
Then, ∀x ∈ RN there exists ŷ minimizing the distance of the point x to the
set D. Moreover it is possible to see that ∀x ∈ RN \ D the minimum is
attained on the boundary, i.e.

min
y∈D
‖y − x‖ = min

y∈∂D
‖y − x‖.

In general the point realizing the minimum is not unique. But if D is convex,
then Prop. 3.3 says that for any x ∈ RN , there is a unique yx ∈ D such that
dD(x) = ‖x− yx‖. The point yx is called the projection of x on the set D.
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A property of convex function is the following

Proposition 3.4. Let C be an open, convex set. Then f : C → R is
convex (respectively concave) if and only if

(3.6) f(x) = sup
i∈I

gi(x), (respectively, f(x) = inf
i∈I

gi(x))

with gi(x) affine functions.

A subset of convex functions is the set of function strongly convex, that
is

Definition. Let C open, convex set. A function f : C → R is said to
be strongly convex if there exists c > 0 such that

(3.7) λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)− cλ(1− λ)|x− y|2

∀x, y ∈ C, λ ∈ [0, 1].

The following proposition gives a helpful tool to show property by per-
turbation

Proposition 3.5. The function f is strongly convex on C (with constant
c) if and only if the function f − 1

2c|x|
2 is convex

Theorem 3.6 (Jensen inequality). Let f : C → R be a convex function
of the convex set C, then f is convex if and only if

f

(
p∑
i=1

λixi

)
≤

p∑
i=1

λif(xi),

for any finite subset {x1, . . . , xp} ⊂ C, and for any λi ≥ 0, and
∑p

i=1 λi = 1.

2.1. Legendre-Fenchel transform. Let f : RN → R be a convex
function, satisfying the super-linearity condition

(3.8) lim
|x|→+∞

f(x)

|x|
= +∞.

Then, the Legendre-Fenchel transform of f is defined by

(3.9) f∗(x) = sup
y∈RN

[
x · y − f(y)

]
x ∈ RN

Theorem 3.7. Let C be an open, convex set, f : C → R convex and
satisfying (3.8), then

i) for any x, there exists y = y(x) such that the sup in (3.9) is at-
tained.

ii) f∗ is convex and lim|x|→+∞
f∗(x)
|x| = +∞.

iii) f∗∗ = f

3. Inf- and sup convolutions

Definition. Let f continuous

Compute the inf- and sup convolutions in the case
f(x) = 1− |x| and f(x) = |x| − 1
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4. First Order Condition for convex function

Theorem 3.8. Let f ∈ C1(C) be a convex function in the open set C.
Given a convex set K ⊂ K we have

(3.10) f(x∗) = min
x∈K

f(x) ⇔ x∗ ∈ K andDf(x∗)(x− x∗) ≥ 0, ∀x ∈ K

Proof. By (3.5)

f(x)− f(x∗) ≥ Df(x∗)(x− x∗) for any x ∈ K
by Df(x∗)(x− x∗) ≥ 0 for any x ∈ K, we get f(x∗) ≤ f(x) for any x ∈ K.
Viceversa, assume that x∗ is a minimum point, take x 6= x∗ ∈ K and
xλ = x∗ + λ(x− x∗) with λ ∈ (0, 1), then

f(x∗ + λ(x− x∗)v)− f(x∗)

λ
≥ 0

As λ→ 0 we have Df(x∗)(x− x∗) ≥ 0. �

Example 12. We explicit conditions to find the minimum of f(x) in the
convex set {x ≥ 0}. By (3.10) to find the minimum point x∗ we impose

(3.11) x∗ ≥ 0 Df(x∗)(x− x∗) ≥ 0, ∀x ≥ 0.

Taking x = x∗ + ei we get ∂f
∂xi

(x∗) ≥ 0. Since x∗ ≥ 0, by (3.10) we get

Df(x∗)x ≥ Df(x∗)x∗ ≥ 0 and therefore for x = 0 Df(x∗)x∗ = 0. By the
non negativity of each factor, fxi(x

∗)x∗i = 0 for i = 1, . . . , N . Then by (3.11)
we have the complementary conditions

(3.12) x∗ ≥ 0
∂f

∂xi
(x∗) ≥ 0, fxi(x

∗)x∗i = 0, i = 1, . . . , N.

4.1. Signed distance function. Given a set D 6= ∅, closed we define

(3.13) d+(x) =


−d(x, ∂D) if x ∈ Int(D),

0 if x ∈ ∂D

d(x, ∂D) if x ∈ C(Int(D))

The set D is described by {x ∈ RN such that d+(x) ≤ 0}



CHAPTER 4

Optimization problems with unilateral and
bilateral constraints

In section 6 we studied the problem of minimizing a function subject to
bilateral constraints, i.e. the problem to minimize f for when the variable x
satisfy a constraint g(x) = 0 for some function g : RN → RM . In this section
we generalize this problem by considering, besides the bilateral constraints,
also unilateral ones, i.e. constraints defined by inequalities.

The problem is therefore the following:

Given f : RN → R and g : RN → RM , h : RN → RP , find

(4.1)
min {f(x) : x ∈ RN s.t. gi(x) ≥ 0, i = 1, . . . ,M,

hi(x) = 0, i = 1, . . . , P}

1. Necessary condition and the Fritz John’s theorem

In this section we consider a generalization for problem with unilateral
constraints of the Lagrange Multipliers Theorem 2.14. The proof is due to
Fritz John and it is based on a penalization technique.

Theorem 4.1. Let I an open subset of RN , f : I → R, g : I → RM , h :
I → RP , C1 functions in I and x0 ∈ I. If there exists an open neighborhood
U of x0 in RN such that

f(x0) ≤ f(x) [f(x) ≥ f(x0)] ∀x ∈ U ∩ {x ∈ I : g(x) ≤ 0, h(x) = 0}

then there exist λ0, λ = (λ1, . . . , λM ) and µ = (µ1, . . . , µP ) such that

i)
(4.2)

λ0
∂f
∂xi

(x0) +
∑M

j=1 λj
∂gj
∂xi

(x0) +
∑P

j=1 µj
∂hj
∂xi

(x0) = 0, i = 1, . . . , N

λigi(x0) = 0, i = 1, . . . ,M, (λ0, λ) ≥ 0, (λ0, λ, µ) 6= 0

g(x0) ≤ 0, h(x0) = 0

ii) In any neighborhood of x0, there exists x such that

λigi(x) > 0 ∀ i s.t. λi > 0

µihi(x) > 0 ∀ i s.t. µi 6= 0
(4.3)

Proof. We consider the proof for the case of a minimum point, the case
of a maximum point point being analogous By the definition of constrained
minimum point and the continuity of f , g and h we can consider δ > 0 such

31
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that for any x ∈ B(x0, δ) ∩ {x ∈ I : g(x) ≤ 0, h(x) = 0}

f(x0) ≤ f(x)

gi(x) < 0 if gi(x0) < 0

We introduce the penalized functional

Fk(x) = f(x) +
1

2
‖x− x0‖2 +

k

2

(
M∑
i1

g+
i (x)2 +

P∑
i1

hi(x)2

)
where gi(x)+ = max{gi(x), 0} whose square is a C1 function with gradient
2g+
i (x)Dgi(x). Consider the optimization problem

(4.4) min
x∈B(x0,δ)

Fk(x)

By Weierstrass’ Theorem (see Theorem 2.2), there exists xk ∈ B(x0, δ) of

minimum for Fk in B(x0, δ). In particular we have

(4.5) Fk(xk) ≤ Fk(x0) = f(x0)

(recall that gi(x0) ≤ 0 and hi(x0) = 0). Moreover, by compactness, the
sequence {xk}k∈N converges up to a subsequence to a point x+ ∈ B(x0, δ).
By (4.5)

M∑
i=1

g+
i (xk)

2 +
P∑
i=1

hi(xk)
2 ≤ 2

k

(
f(x0)− f(xk)−

1

2
‖xk − x0‖2

)
and by the continuity of gi, hi we get for k →∞

M∑
i=1

g+
i (x∗)2 +

P∑
i=1

hi(x
∗)2 ≤ 0

and therefore

(4.6) gi(x
∗) ≤ 0, i = 1, . . . ,M , and hi(x

∗) = 0, i = 1, . . . , P .

Moreover by (4.5), we get

f(xk) +
1

2
‖xk − x0‖2 ≤ Fk(xk) ≤ f(x0)

and passing to the limit for k →∞ we get

(4.7) f(x∗) +
1

2
‖x∗ − x0‖2 ≤ f(x0).

By (4.6), x∗ ∈ {x ∈ I : g(x) ≤ 0, h(x) = 0} and therefore f(x∗) ≥ f(x0).
Hence (4.8) we conclude that ‖x∗ − x0‖2 = 0 and therefore x∗ = x0. Since
xk → x0, we can conclude that for k sufficiently large xk ∈ B(x0, δ) and by
Fermat’s Theorem 2.6

∂Fk
∂xi

(xk) =
∂f

∂xi
(xk) + (xk − x0) +

M∑
j=1

kg+
j (xk)

∂gj
∂xi

(xk)

+

P∑
j=1

khj(xk)
∂hj
∂xi

(xk) = 0, i = 1, . . . , N

(4.8)
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Define Lk, λk0 ∈ R, λk ∈ RM , µk ∈ RP by

Lk =

1 +
M∑
j=1

(kg+
j (xk))

2 +
P∑
j=1

(khj(xk))
2

2

,

λk0 =
1

Lk
, λki =

kg+
i (xk)

Lk
, µki =

khi(xk)

Lk

then

|(λk0, λk, µk)|2 =

(
1

Lk

)2

+
M∑
j=1

(
kg+

j (xk)

Lk

)2

+
M∑
j=1

(
khj(xk)

Lk

)2

=

=

(
1

Lk

)2
1 +

M∑
j=1

(
kg+

j (xk)
)2

+
M∑
j=1

(khj(xk))
2

 = 1

By compactness the sequence (λk0, λ
k, µk) converges, up to a subsequence,

for k →∞ to a vector (λ0, λ, µ) such that |(λ0, λ, µ)| = 1. Dividing (4.8) by
Lk, we get

(4.9) λk0
∂f

∂xi
(xk) +

(xk − x0)

Lk
+

M∑
j=1

λkj
∂gj
∂xi

(xk) +
P∑
j=1

µkj
∂hj
∂xi

(xk) = 0

and recalling that, up to a subsequence, xk → x0 and (λk0, λ
k, µk)→ (λ0, λ, µ)

we get the first condition in (4.2). Since λk0, λ
k ≥ 0 we also get at the limit

λ0, λ ≥ 0.
Let i be such that gi(x0) < 0, then gi(xk) < 0 and therefore

(4.10) λki = max{gi(xk), 0} = 0

Hence if gi(x0) < 0, we get λig(i(x0) = 0. Taking into account for the
other indices i, gi(x0) = 0, we can write λigi(x0) = 0 for any i = 1, . . . ,M
obtaining in such a way all the conditions in (4.2).

To prove (4.3), observe that is λi > 0, then λki > 0 for k sufficiently
large. Hence by (4.10) we get gi(xk) > 0 for such k. In a similar way if
µi 6= 0, then for k sufficiently large µki and therefore hi(xk) must have same
sign of µi. Therefore µki hi(xk) > 0. It follows that for k sufficiently large we
can find xk such that

λigi(xk) > 0 ∀ i s.t. λi > 0

µihi(xk) > 0 ∀ i s.t. µi 6= 0

giving (4.3). �

Remark. If Jg and Jh are the Jacobian matrices of g and h, then (4.2)
can be rewritten in matrix notation as

(4.11)


λ0Df(x0) + [Jg(x0)]Tλ+ [Jh(x0)]Tµ = 0

λg(x0) = 0, (λ0, λ) ≥ 0, (λ0, λ, µ) 6= 0

g(x0) ≤ 0, h(x0) = 0



344. OPTIMIZATION PROBLEMS WITH UNILATERAL AND BILATERAL CONSTRAINTS

Remark. The previous theorem contains as a particular case Theorem
2.14. As already said for this latter theorem, conditions (4.2) are necessary
but not sufficient conditions for x0 being an extremal point.

It is worthwhile to observe that if the coefficient λ0 multiplying the term
Df is null, conditions (4.2) could be not very useful since they do not involve
the function f . In Corollary 2.15, adding a condition about the rank of the
matrix Jg, it was possible to avoid this degenerate case. We are therefore
interested to find conditions in such a way that in (4.2) λ0 > 0.

Corollary 4.2. Under the same assumption of Theorem 4.1, define
I∗(x0) = {i ∈ {1, . . . ,M} : g(x0) = 0} and assume that that the #(I(x0)+P
vectors {Dgi(x), i ∈ I∗(x0)}, {Dhi(x0), i = 1, . . . ,M} are linearly indepen-
dent. Then there exist λ = (λ1, . . . , λM ) and µ = (µ1, . . . , µP ) such that

(4.12)


∂f
∂xi

(x0) +
∑M

j=1 λj
∂gj
∂xi

(x0) +
∑P

j=1 µj
∂hj
∂xi

(x0) = 0, i = 1, . . . , N

λigi(x0) = 0, i = 1, . . . ,M,

g(x0) ≤ 0, h(x0) = 0, λ ≥ 0

Proof. By Theorem 4.1 we know that there exist λ0, λ and µ, not all
null, such that conditions (4.2) are satisfied. We claim that λ0 6= 0. Assume
by contradiction that λ0 = 0, then recalling that λi = 0 if gi(x0) < 0, we get∑

j∈I∗(x0)

λj
∂gj
∂xi

(x0) +

P∑
j=1

µj
∂hj
∂xi

(x0) = 0 i = 1, . . . , N.

By the linear independence of the vectors, we get λ = 0 and µ = 0. Hence
λ0 6= 0 and we can divided by λ0 in the first condition of (4.2) to (4.12). �

Another important regular case is the following

Corollary 4.3. Under the same assumption of Theorem 4.1, assume
that the function h is linear and gi, i = 1, . . . ,M are concave in x0. Then
there exist λ = (λ1, . . . , λM ) and µ = (µ1, . . . , µP ) such that (4.12) holds

Proof. In a neighborhood of x0 we can write

hi(x) = hi(x0) +Dhi(x0)(x− x0)

gi(x) ≤ λgi(x0) +Dgi(x0)(x− x0) i ∈ I∗(x0)

where I∗(x0) as in Corollary 4.2. Hence

P∑
i=1

µihi(x) +
M∑
i=1

λigi(x) ≤
P∑
i=1

µihi(x0) +
∑

i∈I∗(x0)

λigi(x0)

+

 P∑
i=1

µiDhi(x0) +
∑

i∈I∗(x0)

λiDgi(x0)

 (x− x0)

If in (4.2) we assume by contradiction that λ0 = 0 and we recall that λi = 0
for i 6∈ I∗(x0), by the previous inequality we get

P∑
i=1

µihi(x) +
M∑
i=1

λigi(x) ≤ 0.
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But since λ 6= 0 if λ0 = 0, then there exists x in a neighborhood of x0 such
that

P∑
i=1

µihi(x) +
M∑
i=1

λigi(x) > 0

and therefore a contradiction to λ0 = 0. �

Remark. The conditions in (4.12) are known as the Kurush-Kuhn-
Tucker (KKT) necessary conditions

Remark. The Lagrangian L : RN × RM+ × Rp associated to the opti-
mization (4.1) is given by

(4.13) L(x, λ, ν) = f(x) + λg(x) + νh(x),

with λ, ν ∈ RM+ × RP . The KKT conditions can be reformulated as follows

(4.14)


∂L
∂xi

(x0, λ, µ) = 0, i = 1, . . . , N

λigi(x0) = 0, i = 1, . . . ,M,

g(x0) ≤ 0, h(x0) = 0, λ ≥ 0

Example 13. The following example shows that the conditions (4.12)
are necessary, but not sufficient for the existence of an extremal point. Con-
sider (4.1) with

(4.15)


f(x1, x2) = x1x2

g1(x1, x2) = −x1 − x2 + 3 ≥ 0

g2(x1, x2) = −x2 + x1 ≤ 0.

The Karush-Kuhn-Tucker conditions for x0 = (x1, x2) are

(4.16)



λ1 ≥ 0, λ2 ≥ 0

fx1(x0) + λ1g
1
x1(x0) + λ2g

2
x1(x0) = 0,

fx2(x0) + λ1g
1
x2(x0) + λ2g

2
x2(x0) = 0,

λ1g
1(x0) + λ2g

2(x0) = 0

g1(x0) ≤ 0, g2(x0) ≤ 0

Since
g1
x1(x1, x2) = −1 g1

x2(x1, x2) = −1

g2
x1(x1, x2) = 1 g2

x2(x1, x2) = −1

and the conditions becomes

(4.17)



λ1 ≥ 0, λ2 ≥ 0

x0
2 − λ1 + λ2 = 0,

x0
1 − λ1 − λ2 = 0,

λ1(−x0
1 − x0

2 − 3) + λ2(−x2 + x1) = 0

g1(x0) ≤ 0, g2(x0) ≤ 0

Since λ1, λ2 6= 0 are not both null, the only solution is x0
1 = x0

2 = 1, λ1 = 1
and λ2 6= 0, which is not a local minimizer since in the direction (1, 1) the
function increases, while in the direction (−1, 1) decreases. Note that f is
not convex.
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2. Sufficient conditions in the convex case

In some particular case, the KKT condition becomes (4.14) becomes also
sufficient.

Theorem 4.4. Besides the assumptions in Theorem 4.1, assume that
the functions f and gi, i = 1 . . . ,M are convex and that h(x) = Ax − b,
i.e. the bilateral constraints are linear. Then x0 is a solution of (4.1) if and
only if it satisfies (4.14).

Moreover, if f is strictly convex, x0 is the unique solution of (4.1).

Proof. Since λ ≥ 0 for any x ∈ {x ∈ I : g(x) ≤ 0, h(x) = 0},

f(x) ≥ f(x) + λg(x) + µh(x).

Moreover by linearity of h, convexity of f and gi and λ0 ≥ 0 we have

h(x) = h(x0) + Jh(x0)(x− x0)

f(x) ≥ f(x0) +Df(x0)(x− x0)

λg(x) ≥ λg(x0) + λJg(x0)(x− x0)

Hence, by (4.11)

f(x) ≥ f(x) + λg(x) + µh(x) ≥ f(x0) +Df(x0)(x− x0)

+λg(x0) + λJg(x0)(x− x0) + µh(x0) + µJh(x0)(x− x0)

≥ f(x0) +
(
Df(x0) + Jg(x0)Tλ+ Jh(x0)Tµ

)
(x− x0) = f(x0)

for any admissible x, hence x0 is a minimum point.
If f is strictly convex, a similar calculation gives f(x) > f(x0) for any

admissible x, showing that x0 is the unique global minimum. �

3. Examples of constrained problems

In this section we analyze some examples of constrained problems writing
explicitly the corresponding optimality conditions.

3.1. Linear constraints. An important case is the one with linear
constraints, i.e.

(4.18) min{f(x) : x ∈ RN s.t.Ax(x) ≥ b, i = 1, . . . ,M}

where A is a M ×N matrix and b ∈ RM .

(4.19) L(x, λ) = f(x) + λ(b−Ax)

with λ ∈ RM+ . The KKT conditions can be reformulated as follows

(4.20)


Ax0 ≥ b

DxL(x0, λ0) = Df(x0)−ATλ0 = 0

λ(b−Ax0) = 0, λ ≥ 0

If f is convex, then by Theorem 4.4 the conditions in (4.20) are also sufficient
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3.2. Non negative constraints. We consider a problem of the type

(4.21) min{f(x) : x ∈ RN s.t.x ≥ 0, i = 1, . . . ,M}
i.e. the constraints are linear with Aidentity matrix and b = 0. By (4.20)
we get

Df(x0)− λ = 0

x0 ≥ 0, λ ≥ 0, λx = 0

hence λi = ∂f
∂xi

(x0) and therefore

∂f

∂xi
(x0) ≥ 0 if x0,i = 0

∂f

∂xi
(x0) = 0 if x0,i > 0

3.3. Box constraints. We consider a problem of the type

(4.22) min{f(x) : x ∈ RN s.t. ai ≤ xi ≤ bi, i = 1, . . . , N}
where a, b ∈ RN with ai < bi (note that the constraints are linear). We
consider the Lagrangian

L(x, λ) = f(x) + λ(a− x) + ν(x− b)
By (4.12), we get

Df(x0)− λ+ ν = 0

(a− x0)λ = 0, (x0 − b)ν = 0, (λ, ν) ≥ 0

Set

Ja = {j : x0,j = aj}, Jb = {j : x0,j = bj}, Ja = {j : aj < x0,j < bj}
If j ∈ Ja, then xj < bj , hence νj = 0. It follows that

∂f

∂xj
(x0) = λj ≥ 0.

Similarly, if j ∈ Jb, λj = 0 and

∂f

∂xj
(x0) = −νj ≤ 0.

If j ∈ J0, then λj = νj = 0 and therefore

∂f

∂xj
(x0) = 0

The necessary conditions for optimality are

∂f

∂xj
(x0) ≥ 0 if x0,j = aj

∂f

∂xj
(x0) ≤ 0 if x0,j = bj

∂f

∂xj
(x0) = 0 if aj < x0,j < bj .

These condition are also sufficient if f is convex.
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4. Slater condition and saddle points of the Lagrangian

We consider an optimization problem with only unilateral constraints

(4.23) min{f(x) : x ∈ RN s.t. gi(x) ≤ 0, i = 1, . . . ,M}

Definition. Assume that the function g : Ω ⊂ RN → RM are C1 and
convex in the open convex set Ω containing the constraints set

U = {x ∈ RN : g(x) ≤ 0}.
The set U is told to satisfy the Slater condition if there exists x ∈ U such
that g(x) < 0.

Consider the Lagrangian associated to the optimization problem (4.23),
i.e.

(4.24) L(x, λ) = f(x) + λg(x)

The next theorem establish a link between solution of problems (4.23) and
saddle points of the Lagrangian

Theorem 4.5. Assume that g : RN → RM satisfies the Slater condition
in the set U and f : RN → R is convex. Then x0 is a solution of the opti-
mization problem (4.23) if and only it is a saddle point for the Lagrangian,
i.e.

(4.25) L(x0, λ0) = min
x∈RN

max
λ∈RM

+

L(x, λ) = max
λ∈RM

+

min
x∈RN

L(x, λ)

Proof. Assume that x0 solves the minimum problem and consider the
sets

K(x) = {(t0, t) ∈ R× RM , t0 ≥ f(x), t ≥ g(x)}
K = ∪x∈RNK(x)

S = {(s0, s) ∈ R× RM , s0 ≤ f(x0), s ≤ 0}.
Claim 1 K is convex.

Proof. Take (t0, t) and (t′0, t
′) ∈ K. Then for some some x, x′ we have

t0 ≥ f(x), t ≥ g(x), t′0 ≥ f(x′), t′ ≥ g(x′).

Take for 0 ≤ λ ≤ 1, then λt0 + (1 − λ)t′0 ≥ λf(x) + (1 − λ)f(x′). By the
convexity of f

λt0 + (1− λ)t′0 ≥ f(λx+ (1− λ)x′)

and similarly
λt0 + (1− λ)t′0 ≥ g(λx+ (1− λ)x′)

This shows that λt0 + (1− λ)t′0 ∈ K(λx+ (1− λ)x′) ⊂ K. �

Claim 2 S is convex.

Proof. Take (s0, s) and (s′0, s
′) ∈ S and for 0 ≤ λ ≤ 1 λ(s0, s) + (1 −

λ)(s′0, s
′). Then

λs0 + (1− λ)s′0 ≥ f(λx0 + (1− λ)x0) = f(x0),

and
λs+ (1− λ)s′ ≤ 0.

�
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Claim 3 Int(S) ∩K = ∅

Proof. Recall that Int(S){(s0, s) ∈ R × RM, s0 < f(x0), s < 0}. If the
claim 3 is not true, then there exists (s0, s) ∈ Int(S)∩K. Hence there exists
x̂ ∈ RN such that

f(x̂) ≤ s0 < f(x0), g(x̂) ≤ s < 0.

contradicting the assumption that x0 is a minimum point. �

Then we apply the Separation’s Theorem, see (3.1), to get the existence of
a non null vector (p0, p) ∈ R× RM such that

(4.26) p0s0 + ps ≥ p0t0 + pt, for any (s0, s) ∈ S, (t0, t) ∈ K
We have
Claim 4 p0 ≤ 0, p ≤ 0.

Proof. Indeed, arguing by contradiction, if p0 > 0, taking s = 0, x = 0,
t0 = f(0), t = g(0) in (4.26) we get

p0s0 ≥ g(0)p+ f(0)p0 ∀s0 ≤ f(x0)

As s0 goes to −∞ the first hand side goes to −∞ while the second is greater
than a constant. Hence a contradiction.

Assume that pk > 0 for some k ∈ {1, . . . ,M}. By taking (s0, s) =
(f(x0),−tek) and (t0, t) = (f(0), g(0)) we have

−tpk ≥ −f(x0)p0 + p0f(0) + pg(0).

As t goes to +∞ we get a contradiction. �

Claim 5 p0 < 0.

Proof. Indeed for (t0, t) = (f(x), g(x)), x any real number and (s0, s) =
(f(x0), 0) we get

(4.27) p0f(x0) ≥ p0f(x) + pg(x).

if p0 = 0 then 0 ≥ pg(x). Since p ≤ 0 this means g(x) ≥ 0 ∀x ∈ {x ∈ I :
g(x) ≤ 0} and therefore a contradiction to the Slater condition. �

Define λ0 = p
p0

. We now verify that (x0, λ0) is a saddle point for the La-
grangian.
Claim 6 λ0g(x0) = 0

Proof. By (4.27)

p0f(x0) ≥ p0f(x) + pg(x) ∀x ∈ RN .
Since p0 is negative, we have

f(x0) ≤ f(x) + λ0g(x) ∀x ∈ RN .
Taking x = x0 , we get 0 ≤ λ0g(x) hence

(4.28) 0 ≤ λ0g(x)

Since the other inequality is true by x0 ∈ {x ∈ I : g(x) ≤ 0} and therefore
g(x0) ≤ 0 and λ0 ≥ 0, we get

λ0g(x0) = 0

�
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Next, we observe that λg(x0) ≤ 0 per ogni λ ∈ RM+ . Then

f(x0) + λg(x0) ≤ f(x0) + λ0g(x0) ≤ f(x) + λ0g(x)

and therefore (x0, λ0) is a saddle point for the Lagrangian.
To prove the reverse implication, assume that (x0, λ0) is a saddle point for
the Lagrangian. Then

f(x0) + λg(x0) ≤ f(x0) + λ0g(x0) ≤ f(x) + λ0g(x), ∀x ∈ RN , λ ∈ RM+
This implies

λg(x0)− λ0g(x0) = g(x0)(λ− λ0) ≤ 0, ∀λ ∈ RM

By taking λ = λ0 + ei, i = 1, . . . ,M in the previous inequality we get
g(x0) ≤ 0, hence x0 ∈ U .
Moreover by taking λ = 0 since λ0 ≥ 0, we get λ0g(x0) ≥ 0 then λ0g(x0) = 0.
Since λ0g(x) ≤ 0 for all x ∈ U , we have

f(x0) = f(x0) + λ0g(x0) ≤ f(x) + λ0g(x) ≤ f(x), ∀x ∈ U, λ ∈ RM+
and therefore t x0 is solution of the minimum problem (4.23). �
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