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Here we give some known results to introduce the students to the subject.

1. Assumption

We consider the system

(1)

{
Ẋ(t) = b(X(t), α(t)),
X(s) = x,

α(t) is the control function, measurable in [0,+∞) that takes its values
in a compact set A.
In order to ensure the existence and uniqueness of the solution of (1) in the
class Lip ([0, T ]; Rn), we assume that the mapping

b : Rn ×A → Rn

is continuous, and satisfies the following standard assumptions:
There exist two positive constants C1, C2 such that for every x, x′ ∈ Rn,

a ∈ A, we have

(2)

{
‖b(x, a)‖ ≤ C1,

‖b(x, a)− b(x′, a)‖ ≤ C2‖x− x′‖.

The solution Xx(t), starting in x at t = 0, is given by

Xx(t) = x +
∫ +∞

0
b(Xx(s), α(s))ds

We assume that the mapping

f : Rn ×A → R

is continuous, and satisfies the following assumptions:
There exist two positive constants C1, C2 such that for every x, x′ ∈ Rn,

a ∈ A, we have

(3)

{
|f(x, a)| ≤ C1,

|f(x, a)− f(x′, a)| ≤ C2‖x− x′‖.
1
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The function f is called the running cost. Take λ > 0. The functional cost
is

J(x, α) =
∫ +∞

0
f(Xx(s), α(s))e−λsds

The value function is
u(x) = inf

α
J(x, α).

2. The Dynamic programming principle

DPP

u(x) = inf
α

[ ∫ t

0
f(Xx(s), α(s))e−λsds + u(Xx(t))e−λt

]
,

for all real x and for all positive t.
We show that

u(x) ≥ inf
α

[ ∫ t

0
f(Xx(s), α(s))e−λsds + u(Xx(t))e−λt

]
Proof. Take any admissible control, then∫ +∞

0
f(Xx(s), α(s))e−λsds =

∫ t

0
f(Xx(s), α(s))e−λsds+

∫ +∞

t
f(Xx(s), α(s))e−λsds

σ = s− t∫ +∞

t
f(Xx(s), α(s))e−λsds =

∫ +∞

0
f(Xx(σ + t), α(σ + t))e−λ(σ+t)dσ

We define
Xx(σ) = Xx(σ + t)

(4)

{
Ẋx(σ) = Ẋx(t + σ)
X(0) = Xt

Xx(σ) = Xx(0) +
∫ σ

0
Ẋ(s)ds = X(t) +

∫ σ

0
Ẋx(t + s)ds =

X(t) +
∫ σ

0
b(Xx(t + s), α(t + s)ds = X(t) +

∫ σ

0
b(Xx(s), α(s))ds

We set
α(s) = α(t + s)

verifies

(5)

{
Ẋx(σ) = b(Xx(s), α(s))
X(0) = X(t)∫ +∞

t
f(Xx(s), α(s))e−λsds = e−λt

∫ +∞

0
f(Xx(σ + t), α(σ + t))e−λσdσ =

e−λt

∫ +∞

0
f(XX(t)(σ), α(σ))e−λσdσ ≥ e−λtu(X(t))
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Hence

u(x, t) = inf
α

J(x, α) ≥ inf
α

∫ t

0
f(Xx(s), α(s))e−λsds + u(X(t))e−λt

�

Proof. We show that

u(x) ≤ inf
α

[ ∫ t

0
f(Xx(s), α(s))e−λsds + u(Xx(t))e−λt

]
Take any admissible control. Then∫ +∞

0
f(Xx(s), α(s))e−λsds =

∫ t

0
f(Xx(s), α(s))e−λsds+

∫ +∞

t
f(Xx(s), α(s))e−λsds

There exists α̂ such that

u(X(t)) ≥ J(X(t), α̂)− ε.

Take any admissible control α. Set

α(s) =

{
α(s), 0 ≤ s ≤ t

α̂(s− t) s ≥ t,

and

X(s) =

{
X(s), 0 ≤ s ≤ t

X̂(s− t) s ≥ t,

where {
X̂(s) = b(X̂(s), α̂(s))
X̂(0) = X(t).∫ t

0
f(Xx(s), α(s))e−λsds + u(Xx(t))e−λt ≥∫ t

0
f(Xx(s), α(s))e−λsds + e−λtJ(X(t), α̂)− εe−λt =∫ t

0
f(Xx(s), α(s))e−λsds + e−λt

∫ ∞

0
f(X̂X(t)(s), α̂(s))e−λsds− εe−λt =∫ t

0
f(Xx(s), α(s))e−λsds + e−λteλt

∫ +∞

t
f(Xx(s), α(s))e−λsds− εe−λt =∫ +∞

0
f(Xx(s), α(s))e−λsds− εe−λt ≥

u(x)− εe−λt ≥ u(x)− ε

�
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3. The Dynamic Programming Equation

The Bellman equation is

λu(x) + max
a
{−Du(x) · b(x, a)− f(x, a)} = 0.

All the computation are done under the assumption u ∈ C1(Rn). By the
dynamic programming principle, taking α(s) = a a ∈ A

u(x) ≤
∫ t

0
f(Xx(s), a)e−λsds + u(Xx(t))e−λt

Hence

u(x)− u(Xx(t) ≤
∫ t

0
f(Xx(s), a)e−λsds + u(Xx(t))(e−λt − 1)

and
u(x)− u(Xx(t)

t
≤ 1

t

∫ t

0
f(Xx(s), a)e−λsds +

u(Xx(t))(e−λt − 1)
t

As t → 0+ we get

λu−Du(x) · b(x, a)− f(x, a) ≤ 0,

since a is chosen in an arbitrary way

λu(x) + max
a
{−Du(x) · b(x, a)− f(x, a)} ≤ 0.

On the other hand if it is untrue that

λu(x) + max
a
{−Du(x) · b(x, a)− f(x, a)} ≥ 0,

this means that there exists x1 and a positive number θ such that

λu(x1) + max
a
{−Du(x1) · b(x1, a)− f(x1, a)} < −θ < 0.

Hence for any a

λu(x1)−Du(x1) · b(x1, a)− f(x1, a) < −θ < 0.

For t small enough we have also

λu(Xx1(t))−Du(Xx1(t)) · b(Xx1(t), a)− f(Xx1(t), a) < −θ < 0.

By the dynamic programming principle there exists a control α such that

u(x) ≥
∫ t

0
f(Xx1(s), α(s))e−λsds + u(Xx1(s))e

−λt − θt

2

u(x)− u(Xx1(t)) ≥
∫ t

0
f(Xx(s), α(s))e−λsds + u(Xx1(t))(e

−λt − 1)− θt

2

u(x)−u(Xx1(t)) = −
∫ t

0

d

ds
u(Xx1(s)) = −

∫ t

0
Du(Xx1(s))b(u(Xx1(s)), α(s))ds

Hence∫ t

0
−Du(Xx1(s))b(Xx1(s), α(s))ds−

∫ t

0
f(Xx(s), α(s))e−λsds ≥ u(Xx1(t))(e

−λt−1)−θt

2
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and∫ t

0
−Du(Xx1(s))b(u(Xx1(s)), α(s))−f(Xx(s), α(s))ds−

∫ t

0
f(Xx(s), α(s))(e−λs−1)ds ≥

u(Xx1(t))(e
−λt − 1)− θt

2
Since∫ t

0
−Du(Xx1(s))b(u(Xx1(s)), α(s))−f(Xx(s), α(s))ds ≤

∫ t

0
−λu(Xx1(s))ds−θt

we have∫ t

0
−λu(Xx1(s))ds−θt ≥ u(Xx1(t))(e

−λt−1)−θt

2
+

∫ t

0
f(Xx(s), α(s))(e−λs−1)ds

Hence

0 ≥ θt

2
+ ω(t)

with ω(t) → 0 as t → 0, a contradiction.

3.1. Applications. Take

b(X, α) = −X · α for X, α ∈ R,

J(x, α) =
∫ ∞

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds.

In this case the principle of dynamic programming means that

(6) u(x) = inf
α

(∫ t

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds + u(Xα

x (t))e−2t
)

for every t > 0. Hence we deduce the

Proposition 3.1. The value function u : R → R satisfies the following condi-
tions:

(a) u is Lipschitzian;

(b) in every point x 6= 0 where u is differentiable, we have

2u(x)− |x|+ max
|a|≤1

{axu′(x)− |a|} = 0.

Proof.
(a) For x, y ∈ R and ε > 0 fixed arbitrarily, there exists an admissible

control such that

u(x) >

∫ ∞

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds− ε.

Since

u(y) ≤
∫ ∞

0

(∣∣Xα
y (s)

∣∣ + |α(s)|
)
e−2s ds,
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we have

u(y)− u(x) <

∫ ∞

0

(∣∣Xα
y (s)

∣∣− |Xα
x (s)|

)
e−2s ds + ε

≤
∫ ∞

0

∣∣Xα
y (s)−Xα

x (s)
∣∣ e−2s ds + ε

= |y − x|
∫ ∞

0
e−

R s
0 α(t) dte−2s ds + ε

≤ |y − x|
∫ ∞

0
e−s ds + ε

= |y − x|+ ε.

Letting ε → 0 and using the symmetry between x and y, we conclude that

|u(y)− u(x)| ≤ |y − x| for all x, y ∈ R.

(b) For every sufficiently regular admissible control α we have

Xα
x (t) = xe−

R t
0 α(s) ds = x− axt + o(t) = x + o(1), a := α(0+),

and hence
u(Xα

x (t)) = u(x)− axu′(x)t + o(t)
if t ↘ 0. Furthermore, recall that

e−2t = 1− 2t + o(t)

if t → 0.
Using these relations, we deduce from (6) for every admissible constant

control α = a that

u(x) ≤
∫ t

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds + u(Xα

x (t))e−2t

=
∫ t

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds + u(x)− axu′(x)t− 2u(x)t + o(t),

whence

2u(x) + axu′(x) ≤ 1
t

∫ t

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds + o(1).

Letting t → 0 we obtain that

2u(x)− |x|+
{
axu′(x)− |a|

}
≤ 0.

Maximizing with respect to a, we conclude that

2u(x)− |x|+ max
|a|≤1

{
axu′(x)− |a|

}
≤ 0.

In order to show the inverse inequality, fix t > 0 and ε > 0 arbitrarily.
Using (6) there exists an admissible control α such that

u(x) >

∫ t

0

(
|Xα

x (s)|+ |α(s)|
)
e−2s ds + u(Xα

x (t))e−2t − εt.
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Assuming for simplicity that this control is sufficiently regular, using the
above estimates of Xα

x (t), u(Xα
x (t)) and e−2t, it follows that

u(x) >

∫ t

0
|x|+ |a|+ o(1) ds + u(x)− axu′(x)t− 2u(x)t + o(t)− εt,

so that

2u(x)− |x|+
{
axu′(x)− |a|

}
≥ o(1)− ε.

Maximizing with respect to a this yields

2u(x)− |x|+ max
|a|≤1

{
axu′(x)− |a|

}
≥ o(1)− ε.

Now letting t → 0 and then letting ε → 0 we conclude that

2u(x)− |x|+ max
|a|≤1

{
axu′(x)− |a|

}
≥ 0. �

4. A brief remaind on Hopf-Lax formula

We assume H smooth, convex, coercive, u0 ∈Lip(RN ), u0 ∈ B(RN ) (B
reads bounded).

H∗(x) = max
y
{xy −H(y)}

As a reference to this part we may refer to L.C. Evans’s book [5], in which the
problem is split in three parts H smooth, convex, coercive H(p)/|p| → +∞
as |p| → +∞. H? dual convex.

H?(x) = max
y
{xy −H(y)}

• Variational Approach.

ũ(x, t) = inf
{ ∫ t

0
H∗(ζ̇(s))ds + u0(y) : ζ(0) = y, ζ(t) = x

}
• PDEs.

Consider the Cauchy problem for the Hamilton-Jacobi equation

(7)

{
vt + H(Dv) = 0 in RN × (0,+∞)
v(0, x) = u0

• Hopf-Lax formula.

u(x, t) = min
y∈RN

{
tH∗

(
x− y

t

)
+ u0(y)

}
(Hopf − Lax formula)
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4.1. Reminds on viscosity solutions. The notion of viscosity solution
was introduced by M. G. Crandall and P. L. Lions [3]. Let us recall their
notion using test function, as introduced in M.G. Crandall, L.C. Evans, and
P.-L. Lions [4]. We use, to simplify, the vanishing viscosity method. The
key point is that the notion gives a meaning to the solution of the equation
also if the solution has very weak property of regularity (for example u is
just a continuous function or even less regular).

The equation to consider is{
uε

t + H(Duε)− ε∆uε = 0 in (0,+∞)× RN

u(0, x) = u0

Fix ε > 0 and we consider a subsequence uεj , such that

uεj → u,

as j → +∞. Next, we consider φ ∈ C2 such that u−φ has a strict maximum
at (x0, t0). We also assume that u is C2.
Since εj is small there exists (xεj , tεj ) such that uεj −φ has a max in (xεj , tεj )
with

(xεj , tεj ) → (x0, t0).
Moreover,

Duεj (xεj , tεj ) = Dφ(xεj , tεj )

ut(xεj , tεj ) = φt(xεj , tεj )

−∆uεj (xεj , tεj ) ≥ −∆φ(xεj , tεj )

φt(xεj , tεj ) + H(Dφt(xεj , tεj ) = ut(xεj , tεj ) + H(Dut(xεj , tεj ) =

εj∆uεj (xεj , tεj ) ≤ εj∆φ(xεj , tεj )
As j → +∞,

φt(x0, t0) + H(Dφt(x0, t0) ≤ 0
Then, we are now ready to recall the definition using test function.

We say that u is a (viscosity) subsolution of

ut(x, t) + H(Du(x, t)) = 0

if for every φ ∈ C1 such that u− φ has a max in (x0, t0)

φt(x0, t0) + H(Du(x0, t0)) ≤ 0

We say that u is a viscosity supersolution of

ut(x, t) + H(Du(x, t)) = 0

if for every φ ∈ C1 such that u− φ has a min in x

φt(x0, t0) + H(Dφ(x0, t0)) ≥ 0

A viscosity solution of ut(x, t) + H(Du(x, t)) = 0is a viscosity subsolution
and a viscosity supersolution (of ut(x, t) + H(Du(x, t)) = 0)
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4.2. Equivalence of the three problems. The three problems are equiv-
alent, that is the u = ũ = v (v being the unique viscosity solution of (7)).
We give the reference of the complete proof to [5], however here the rewrite
the equivalence between u and ũ to give an idea how to argue in this topic.
We define the trajectory

ζ(s) = y +
s

t
(x− y), 0 ≤ s ≤ t, ˙ ζ(s) =

x− y

t
By definition, for this trajectory

inf
{ ∫ t

0
H∗(ζ(s))ds+u0(y) : ζ(0) = y, ζ(t) = x

}
≤

∫ t

0
H∗(ζ̇(s))ds+u0(y) =∫ t

0
H∗

(
x− y

t

)
ds + u0(y),

which immediately shows

(8) ũ(x, t) ≤ u(x, t)

Jensen’s inequality gives (H∗convex)

H∗
(

1
t

∫ t

0
ζ̇(s)ds

)
≤ 1

t

∫ t

0
H∗(ζ̇(s))ds

Since ∫ t

0
ζ̇(s)ds = ζ(t)− ζ(0) = x− y

tH∗
(

x− y

t

)
≤

∫ t

0
H∗(ζ̇(s))ds

tH∗
(

x− y

t

)
+ u0(y) ≤

∫ t

0
H∗(ζ̇(s))ds + u0(y)

Passing to the inf

(9) u(x, t) ≤ ũ(x, t),

hence

(10) u(x, t) = ũ(x, t)

To give just an idea how to pass the equation, it is relevant to show a
property of u, showing a semigroup property.

(11) u(x, t) = min
y∈RN

{
(t− s)H∗

(
x− y

t− s

)
+ u(y, s)

}
Select x̂ such that

u(x, t) = tH∗
(

x− x̂

t

)
+ u0(x̂)

y =
s

t
x + (1− s

t
)x̂
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x− y

t− s
=

x− x̂

t
=

y − x̂

s

(t− s)H∗
(

x− y

t− s

)
+ u(y, s) = (t− s)H∗

(
x− x̂

t

)
+ u(y, s) ≤

(t− s)H∗
(

x− x̂

t

)
+ sH∗

(
y − x̂

s

)
+ u0(x̂) =

tH∗
(

x− x̂

t

)
+ u0(x̂) = u(x, t)

Passing to the min

(12) min
y∈RN

{
(t− s)H∗

(
x− y

t− s

)
+ u(y, s)

}
≤ u(x, t)

Next, choose z ∈ RN

u(y, s) = sH∗
(

y − z

s

)
+ u0(z)

x− z

t
= (1− s

t
)
x− y

t− s
+

s

t

y − z

s
By the convexity of H∗

H∗
(

x− z

t

)
≤ (1− s

t
)H∗

(
x− y

t− s

)
+

s

t
H∗

(
y − z

s

)
Then

u(x, t) ≤

tH∗
(

x− z

t

)
+ u0(z) ≤ (t− s)H∗

(
x− y

t− s

)
+ sH∗

(
y − z

s

)
+ u0(z) =

(t− s)H∗
(

x− y

t− s

)
+ u(y, s)

The result follows since y can be chosen in arbitrary way.
Now the check how it is possibile to connect the problem to the PDEs,
assuming regularity for the function u and using the semigroup formula.
Fix q ∈ RN h > 0

u(x + hq, t + h) = min
y∈RN

{
(t− s)H∗

(
x + hq − y

h

)
+ u(y, t)

}
≤

hH∗(q) + u(x, t)
From which we deduce that

u(x + hq, t + h)− u(x, t)
h

≤ H∗(q)

h → 0+

qDu + ut −H∗(q) ≤ 0,
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the inequality being true also for the max yields

ut + H(Du) ≤ 0.

We will not show the other inequality, refering to [5]

5. Eikonal equations

We now consider the problem of minimal exit time from an open set. Con-
sider a system satisfying the state equation

(13)

{
Ẋ(s) = α(s) in the open interval Ω = (−1, 1)
X(0) = x

where the controls α are bounded : |α(s)| ≤ 1 for all s. Such a control is
called admissibile.

Problem: find α such that the system attains the boundary of Ω in the small-
est possible time T (x). A direct computation shows that T (x) = 1− |x| for

all x ∈ [−1, 1], and for each fixed x ∈ [−1, 1]−{0} un optimal control is the
constant function

α(s) = sign of x, 0 ≤ s ≤ T (x).

Moreover if x 6= 0 the control is unique, and depends on the time only via
the system:

α(s) = sign of X(s).

(so called called feedback controls), while for x = 0 there are two optimal
controls: the constant functions α = 1 and α = −1.

Proposition 5.1.
(a) We have T (x) = 1− |x| for all x ∈ [−1, 1].

(b) For each fixed x ∈ [−1, 1], x 6= 0 an optimal control is the constant
function

α(s) = sign of x, 0 ≤ s ≤ T (x).

Proof. If 0 ≤ t < 1− |x|, then for every admissible control α we have

|Xα
x (t)| =

∣∣∣x +
∫ t

0
α(s) ds

∣∣∣ ≤ |x|+ |t| < 1,

whence
T (x) ≥ 1− |x| .

Moreover, for x 6= 0 we have equality in the above estimate if and only if
t = 1− |x| and α(s) = sign of x for all 0 ≤ s ≤ t. �



12 PAOLA LORETI

• The proof shows that for x 6= 0 the control is unique, and it depends
on the time only via the system

α(s) = sign of X(s).

Controls of this type, called feedback controls, have much interest in
the applications because they allow us to modify the state of the
system on the basis of the sole knowledge of its actual state.

In the proof of the second inequality we assumed that the controls
are regular. This can be avoided by an indirect argument, contained
in several references cited at the end of these notes. However, we
prefered to give a direct and more transparent proof.

In case x = 0 there are two optimal controls: the constant func-
tions α = 1 and α = −1.

Proposition 5.2. The function T : [−1, 1] → R satisfies the following
conditions:

(a) T (−1) = T (1) = 0;

(b) T is Lipschitzian;

(c) |T ′(x)| − 1 = 0 in every point x ∈ (−1, 1) where T is differen-
tiable and T (x) > 0.

Proof.
(a) Obvious from the definition.

For the proof of (b) and (c), observe that the principle of dynamic
programming yields

(14) T (x) = inf
α

[T (Xα
x (t)) + t] for every 0 ≤ t ≤ T (x).

(b) We prove that

(15) |T (x)− T (y)| ≤ |x− y|
for every x, y ∈ [−1, 1]. Assume by symmetry that T (x) ≥ T (y).
The case T (x) ≤ |x− y| is obvious:

T (x)− T (y) ≤ T (x) ≤ |x− y| .
If T (x) > |x− y| =: t, then take an admissible control α such that

α(s) = sign of (y − x) for 0 ≤ s ≤ t := |x− y| .
Then Xα

x (t) = y, so that, applying (14) we obtain T (x) ≤ t + T (y),
i.e., (15).

(c) For every sufficiently regular admissible control we have

Xα
x (t) = x +

∫ t

0
α(s) ds = x + at + o(t) = x + o(1), a := α(0+),

and hence

T (Xα
x (t)) = T (x) + T ′(x)at + o(t)
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if t ↘ 0. Choosing a constant control α = a and using these rela-
tions, we deduce from (14) the estimate

T (x) ≤ T (Xα
x (t)) + t = T (x) + T ′(x)at + o(t) + t,

whence
−aT ′(x)− 1 ≤ o(1).

Letting t ↘ 0 and then maximizing with respect to a, we conclude
that ∣∣T ′(x)

∣∣− 1 ≤ 0.

In order to show the inverse inequality, fix 0 < t < T (x) and ε > 0
arbitrarily. Using (14), there exists an admissible control α such that

T (x) > t + T (Xα
x (t))− εt.

Assuming that this control is regular, using the above estimate of
T (Xα

x (t)) it follows that

T (x) > t + T (x) + T ′(x)at + o(t)− εt,

whence
−aT ′(x)− 1 > o(1)− ε.

Maximizing with respect to a, this yields the inequality∣∣T ′(x)
∣∣− 1 > o(1)− ε.

Finally, letting t → 0 and then ε → 0, we conclude that∣∣T ′(x)
∣∣− 1 ≥ 0. �

More general, eikonal equations are

Du(x) = n(x),

for suitable functions n.

6. Uniqueness

6.1. Harmonic functions and the maximum principle. The
following resulo show the strict minimum points of the constrained
problem

(16) Min f(x) : ∆f(x) = 0, x ∈ Ω

are located in the boundary of Ω.
Let Ω an open, bounded set. Then its boundary ∂Ω is a compact

set. If f is a continuous function in Ω, the following real numbers
are well defined

m∂Ω = Min {f(x);x ∈ ∂Ω}, M∂Ω = Max {f(x);x ∈ ∂Ω},

mΩ = Min {f(x);x ∈ ∂Ω}, MΩ = Max {f(x);x ∈ ∂Ω},
Then
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Theorem 6.1. If f ∈ C0(Ω) ∩ C2(Ω) verifies

∆f =
∑
i=1N

∂2f

∂xi
= 0,

then
m∂Ω ≤ mΩ M∂Ω ≥ MΩ

Proof. For any ε > 0 we consider

gε(x) = f(x)− ε |x|2

If follows that g ∈ C0(Ω) ∩ C2(Ω), and

∆gε(x) = ∆f(x)− ε∆(|x|2) = −2Nε < 0.

Then the absolute minimum of gε in Ω has to be assumed on the
boundary of Ω and

gε ≥ min {f(x)− ε |x|2 ; x ∈ ∂Ω}.
Since Ω is a bounded set there exists R > 0 such that |x| ≤ R,
∀x ∈ Ω. Then

f(x)− ε |x|2 = gε(x) ≥ m∂Ω − εR2.

As ε → 0,
f(x) ≥ m∂Ω.

In an analogous way we argue for the maximum taking

hε(x) = f(x + ε |x|2)
�

6.2. Viscosity Solutions.

Remark. Let us explain the idea of the proof. Assume that the con-
tinuous function u−v admits a global minimum in some point b and
a global maximum in some point c. If u and v are also differentiable
in these two points, then

(u− v)′(b) = (u− v)′(c) = 0,

so that
u′(b) = v′(b) and u′(c) = v′(c).

Therefore we deduce from the equation (??) that

u(b) = v(b) and u(c) = v(c),

i.e.,
(u− v)(b) = (u− v)(c) = 0.

Since
(u− v)(b) ≤ (u− v)(x) ≤ (u− v)(c)

for every x, by definition of b and c we conclude that u = v.
There are two technical difficulties here:
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– it is not sure that u−v has maximal and minimal values because
R is not compact;

– even if there exist such points, it is not sure that u and v are
differentiable in b and c.

We overcome these difficulties by using a penalization method.

Proof. One part (a) is established, parts (b) readily follow from propositions
?? and ??. Fix δ > 0 arbitrarily. We prove the inequality u ≤ v os part (a)
in three steps.

(i) For every fixed ε > 0, consider the continuous function

w(x, y) := u(x)− v(y)− (x− y)2

2ε
− δ

2
(x2 + y2).

Since the functions u and v are Lipschitzian, they increase at most linearly
at infinity, so that

w(x, y) → −∞ if |x|+ |y| → ∞.

Consequently, w has a global maximum in some point (xε, yε).
Then the function

x 7→ u(x)− v(yε)−
(x− yε)2

2ε
− δ

2
(x2 + y2

ε)

has a maximum in xε. Therefore
xε − yε

ε
+ δxε ∈ D+u(xε)

and hence

u(xε) + H
(
xε,

xε − yε

ε
+ δxε

)
≤ 0

because u is a subsolution. Analogously, the function

y 7→ −u(xε) + v(y) +
(xε − y)2

2ε
+

δ

2
(x2

ε + y)

has a minimum in yε. Consequently,

xε − yε

ε
− δyε ∈ D−v(yε)

and therefore

v(yε) + H
(
yε,

xε − yε

ε
− δyε

)
≥ 0

because u is a supersolution. Combining the two inequalities we obtain that

u(xε)− v(yε) ≤ H
(
yε,

xε − yε

ε
− δyε

)
−H

(
xε,

xε − yε

ε
+ δyε

)
.

For every fixed x, using the relation

w(x, x) ≤ w(xε, yε)
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we have

u(x)− v(x)− δx2 ≤ u(xε)− v(yε)−
(xε − yε)2

2ε
− δ

2
(x2

ε + y2
ε)

≤ u(xε)− v(yε)

and hence

(17) u(x)− v(x)− δx2 ≤ H
(
yε,

xε − yε

ε
− δyε

)
−H

(
xε,

xε − yε

ε
+ δxε

)
.

(ii) Next we prove that the three sequences

(xε), (yε) and
(xε − yε

ε

)
are bounded. The relation

w(0, 0) ≤ w(xε, yε)

implies the inequality

u(0)− v(0) ≤ u(xε)− v(yε)−
(xε − yε)2

2ε
− δ

2
(x2

ε + y2
ε).

Consequently, denoting by L a Lipschitz constant of both u and v, we have

(xε − yε)2

2ε
+

δ

2
(x2

ε + y2
ε) ≤ u(xε)− u(0) + v(0)− v(yε) ≤ L(|xε|+ |yε|).

Hence

(|xε|+ |yε|)2 ≤ 2(x2
ε + y2

ε) ≤
4L

δ
(|xε|+ |yε|)

and therefore

(18) |xε|+ |yε| ≤
4L

δ
.

Now using the inequality

w(xε, xε) + w(yε, yε) ≤ 2w(xε, yε)

we have

u(xε)− v(xε) + u(yε)− v(yε) ≤ 2u(xε)− 2v(yε)−
(xε − yε)2

2ε
.

Consequently,

(xε − yε)2

2ε
≤ u(xε)− u(yε) + v(xε)− v(yε) ≤ 2L |xε − yε|

and therefore ∣∣∣xε − yε

ε

∣∣∣ ≤ 4L.

(iii) Since the function H is continuous, letting δ → 0 in (17) and using
(18) we obtain for every x the inequality

u(x)− v(x) ≤ H
(
yε,

xε − yε

ε

)
−H

(
xε,

xε − yε

ε

)
.
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Observe that the arguments of H are bounded with respect to ε and that
xε− yε → 0 if ε → 0. Since H is uniformly continuous in every compact set,
leting ε → 0 we conclude that

u(x)− v(x) ≤ 0

for every x. �
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