ANALISI MATEMATICA II (Ing. Gestionale) APPELLO STRAORDINARIO 13.11.2015 A.A.2014/15

COGNOME E NOMELUOGO E DATA DI NASCITA		
MOTIVARE CHIARAMENTE T	UTTE LE RISPOSTE Tempo 2 ore	COMPITO B

Dichiaro di avere superato l'esame di Analisi Matematica I

SI

NO

FIRMA

- 1) Data la funzione $f: E \subset \mathbb{R}^2 \to \mathbb{R}, f(x,y) = (x^2 + y^2 \pi^2) \sin y$, determinare
 - a) insieme di definizione $E \subset \mathbb{R}^2$.
 - b) i punti di stazionarietà nell'insieme $E \subset \mathbb{R}^2$.
 - c) Classificare i punti di stazionarietà ottenuti e determinare $f(E) \subset \mathbb{R}$
 - **d)** Dato il compatto D di $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 2\pi^2, y \ge 0\}$, determinare $f(D) \subset \mathbb{R}$.
 - e) Riconoscere che f(D) = [m, M] dove, rispettivamente, m ed M indicano il minimo ed il massimo valore assunto da f in D.
- 2) Data l'equazione differenziale:

$$y'' + 2\beta y' + 16y = \cos(4x), \quad x \in I \subset \mathbb{R}, \quad \beta \in \mathbb{R}$$
 (1)

determinare:

- a) l'intervallo $I \subset \mathbb{R}$;
- **b)** l'integrale generale di (1) in corrispondenza a $\beta \in \mathbb{R}$
- c) fissato $\beta = 0$, determinare la soluzione (Esiste ? È UNICA ? Perchè?) del problema di Cauchy

$$\begin{cases} y(0) &= 1\\ y'(0) &= 0 \end{cases} \tag{2}$$

3) Date le funzioni di variabile reale

$$f(x) = \frac{1}{1 - 3x}$$
 e $g(x) = \frac{2x}{(1 - 3x)^2}$ (3)

determinare:

- a) l'insieme di definizione $E \subset \mathbb{R}$ (N.B.: è lo stesso per entrambe le funzioni);
- b) lo sviluppo in serie di Taylor della funzione f(x) di punto iniziale $x_0 = 0$, precisandone "a priori" la regione di convergenza B;
- c) lo sviluppo in serie di Taylor della funzione g(x) di punto iniziale $x_0 = 0$, precisandone "a priori" la regione di convergenza B (È possibile ricavarlo dallo sviluppo in serie di Taylor della funzione f(x) di punto iniziale $x_0 = 0$: come ? Peerchè ?);
- d) indicarne, poi, un sottoinsieme $A \subset B$ nel quale la serie trovata al punto b) converge totalmente. Dimostrare la convergenza totale in A.
- e) lo sviluppo in serie di Taylor di punto iniziale $\tilde{x}_0 = 3$, precisandone "a priori" la regione di convergenza.