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Abstract: We consider fractional-in-time Venttsel’ problems in fractal domains of Koch type. Well- 1

posedness and regularity results are given. In view of numerical approximation, we consider 2

the associated approximating pre-fractal problems. Our main result is the convergence of the 3

solutions of such problems towards the solution of the fractional-in-time Venttsel’ problem in the 4

corresponding fractal domain. This is achieved via the convergence (in the Mosco-Kuwae-Shioya 5

sense) of the approximating energy forms in varying Hilbert spaces. 6

Keywords: Fractional Caputo time derivative; Venttsel’ problems; fractal domains; asymptotic 7

behavior; varying Hilbert spaces: resolvent families. 8

MSC: 35R11, 26A33, 35B40, 28A80. 9

1. Introduction 10

Aim of this paper is to study the asymptotic behavior of the solution of time-fractional 11

Venttsel’ problems (Ph) in Koch-type pre-fractal domains Ωh, and to prove that the limit is 12

the solution of the corresponding problem (P) in the Koch domain Ω. Beyond the interest 13

in itself, this result is a preliminary step towards the numerical approximation of problem 14

(P), following the approach of [11]. 15

Fractal geometries are good models for irregular media, and many diffusion phenomena 16

take place across irregular layers. This motivates the study of fractional heat diffusion 17

across irregular boundaries. 18

From the mathematical point of view, the problem can be viewed as the coupling of an 19

evolution equation in the bulk and an evolution equation on the boundary. These problems 20

are also known as boundary value problems (BVPs) with dynamical boundary conditions. 21

In the present setting, the resulting boundary condition is of second order, which is in some 22

sense unusual for BVPs involving second order operators. 23

We formally state the model problem (P) as: 24

(P)


∂α

t u(t, P)− ∆u(t, P) = f (t, P) in (0, T)× Ω,

∂α
t u(t, P)− ∆Ku(t, P) + b(P)u(t, P) + ∂u(t,P)

∂n = f (t, P) in (0, T)× K,

u(0, P) = φ(P) in Ω,

where Ω ⊂ R2 is the two-dimensional open bounded domain with boundary K = ∂Ω the 25

Koch snowflake (see Section 2.1), 0 < α ≤ 1, ∂α
t is the fractional Caputo time derivative (see 26

Section 2.5 for the definition), ∆K is the Laplace operator defined on the fractal K (see (8) 27

in Section 3.1), b is a continuous strictly positive function on Ω, ∂u
∂n denotes the normal 28

derivative across K, f and φ are given data in suitable functional spaces (see Section 4). 29
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For h ∈ N, we denote by Ωh ⊂ R2 the pre-fractal domain with boundary ∂Ωh = Kh, 30

where Kh is the polygonal curve approximating K at the h-th step (see Section 2.1). 31

We consider the problems (Ph) defined on Ωh. For every h ∈ N, we formally present 32

problem (Ph) as: 33

(Ph)


∂α

t uh(t, P)− ∆uh(t, P) = fh(t, P) in (0, T)× Ωh,

δh∂α
t uh(t, P)− ∆Kh uh(t, P) + δhb(P)uh(t, P) + ∂uh(t,P)

∂nh
= δh fh(t, P) in (0, T)× Kh,

uh(0, P) = φh(P) in Ωh,

where ∆Kh is the piecewise tangential Laplacian defined on Kh (see Section 3.2), ∂uh
∂nh

the 34

normal derivative across Kh and fh(t, P) and φh(P) are given data in suitable functional 35

spaces. The positive constant δh will have a key role in the asymptotic behavior as 36

h → +∞ (see Section 5). The choice of this constant allows us to overcome the difficulties 37

arising from the jump of dimension in the asymptotic analysis from the pre-fractal case 38

to the fractal one. 39

We remark that Venttsel’ problems in fractal domains and their approximation have 40

been firstly studied in [34], see also [9,13,33]. These problems have been later generalized 41

to the case of quasi-linear and/or fractional-in-space operators, see e.g. [12,14]. 42

The literature on Venttsel’ problems in smooth domains is huge, starting from the 43

pioneering work of Venttsel’ of 1959 [39], where he introduced a new class of boundary con- 44

ditions for elliptic operators given by second order integro-differential equations (see also 45

[2,3,17,24,37]). We refer the reader to the introduction of [34] for the physical motivations, 46

see also [20]. 47

As to the literature on time-fractional problems, the existing literature is wide. Among 48

the others, we refer to [4,5,15,22,29,31] and the references therein and to [19] for time- 49

fractional Venttsel’ problems in Lipschitz domains; for time-fractional equations in fractal 50

domains, we refer e.g. to [7,8]. 51

Our goal is to prove well-posedness results for problems (P) and (Ph) and to prove 52

that the “fractal" solution of problem (P) can be approximated by the sequence {uh} of the 53

“smoother" solutions of problems (Ph). 54

More precisely, in Section 4.1 we introduce abstract Cauchy problems (P) and (Ph) 55

and we prove that problem (P) is the “strong formulation" of problem (P) (see Theorem 56

3) and that, for every h ∈ N, problem (Ph) is the “strong formulation" of problem (Ph) 57

(see Theorem 4). Existence and uniqueness results of the “strong solution" are obtained by 58

the well-posedness results for fractional-in-time Cauchy problems [19]. 59

We emphasize that the natural functional framework for studying problems (Ph) is 60

that of the varying spaces L2(Ωh, mh) (see Section 5.1). 61

The asymptotic analysis of the solutions of problems (Ph) is performed by using the 62

Mosco-Kuwae-Shioya (M-K-S) convergence. In [34] it has been proved that the energy 63

forms E(h), associated to problems (Ph), converge in the M-K-S sense to the fractal energy 64

form E, associated to problem (P). This implies the convergence of associated semigroups 65

and resolvents and it turns out to be crucial for the proof of Theorem 6. 66

The plan of the paper is the following. 67

In Section 2 we recall the geometry, the functional setting, the definition of convergence of 68

varying Hilbert spaces as well as the definition of fractional Caputo time derivative. 69

In Section 3 we introduce the energy forms E and E(h), see (11) and (17) respectively, and 70

the associated resolvents and semigroups. 71

In Section 4 we study existence and uniqueness of the solutions of the evolution prob- 72

lems (P) and (Ph). Moreover, we give the strong formulations of problems (P) and (Ph). 73

In Section 5 we state the convergence of the energy forms and of the Hilbert spaces and 74

in Theorem 6 we prove the convergence of the pre-fractal solutions to the fractal solution 75

in a suitable weak sense. 76
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2. Preliminaries 77

2.1. Geometry 78

In this paper we denote points in R2 by P = (x1, x2), the Euclidean distance by |P− P0| 79

and the Euclidean ball by B(P0, r) = {P ∈ R2 : |P − P0| < r} for P0 ∈ R2 and r > 0. The 80

Koch snowflake K [16] is the union of three com-planar Koch curves K1, K2 and K3, see 81

Figure 1. 82

Figure 1. The Koch snowflake K.

The Hausdorff dimension of the Koch snowflake is d f =
ln 4
ln 3 . 83

The natural finite Borel measure µ supported on K is defined as 84

µ := µ1 + µ2 + µ3, (1)

where µi denotes the normalized d f -dimensional Hausdorff measure, restricted to Ki, 85

i = 1, 2, 3. 86

We denote by 87

Kh+1 =
3⋃

i=1

K(h+1)
i (2)

the closed polygonal curve approximating K at the (h + 1)-th step. We denote by K(h+1)
i 88

the pre-fractal (polygonal) curve approximating Ki. 89

The measure µ enjoys the following property: there exist two positive constants c1, c2 90

such that 91

c1rd f ≤ µ(B(P, r) ∩ K) ≤ c2rd f ∀ P ∈ K. (3)

Since µ is supported on K, in (3) we replace µ(B(P, r) ∩ K) with µ(B(P, r)). 92

Let Ω denote the two-dimensional open bounded domain with boundary K and, for 93

every h ∈ N, let Ωh be the pre-fractal polygonal domains approximating Ω at the n-th step, 94

and let Kh = ∂Ωh be the pre-fractal curves. We denote by M and by
◦

M any segment of 95

Kh and the related open segment respectively. We note that the sequence {Ωh}h∈N is an 96

invading sequence of sets exhausting Ω. 97

2.2. Sobolev spaces 98

Throughout the paper, C will denote possibly different positive constants. The depen- 99

dence of such constants on some parameters will be given in parentheses. 100

Let G (resp. S) be an open (resp. a closed) set of RN . For p ≥ 1, we denote the Lebesgue 101

space with respect to the Lebesgue measure dLN by Lp(G) and the Lebesgue space on 102

∂G with respect to an invariant Hausdorff measure µ supported on ∂G by Lp(∂G, µ). For 103

s ∈ R+, we denote the usual (possibly fractional) Sobolev spaces by Hs(G) [36]. We 104
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denote the space of infinitely differentiable functions with compact support on G by 105

D(G) and the space of continuous functions on S by C(S). 106

In the following, we will make use of trace spaces on boundaries of polygonal domains
of R2; for more details, we refer the reader to [6].
By H1(Kh) we denote the set

{v ∈ C(Kh) : u| ◦
M

∈ H1(
◦

M)},

with the norm
∥u∥2

H1(Kh)
= ∥u∥2

L2(Kh)
+ ∥∇u∥2

L2(Kh)
.

By Hs(Kh), for 0 < s ≤ 1, we denote the Sobolev space on Kh, defined by local 107

Lipschitz charts as in [36]. We point out that for s = 1 the two definitions coincide with 108

equivalent norms. 109

By |A| we denote the Lebesgue measure of a measurable subset A ⊂ RN . For f in Hs(G), 110

the trace operator γ0 is defined as 111

γ0 f (P) := lim
r→0

1
|B(P, r) ∩ G|

∫
B(P,r)∩G

f (Q)dLN(Q) (4)

at every point P ∈ G where the limit exists. The limit (4) exists at quasi every P ∈ G with 112

respect to the (s, 2)-capacity (see [1], Definition 2.2.4 and Theorem 6.2.1 page 159). In the 113

following, sometimes we omit the trace symbol leaving the interpretation to the reader. 114

We now recall the results of Theorem 2.24 in [6], referring to [23] for a more general 115

discussion. 116

Proposition 1. Let Ωh and Kh be as above and let 1
2 < s < 3

2 . Then Hs− 1
2 (Kh) is the trace space 117

to Kh of Hs(Ωh) in the following sense: 118

i) γ0 is a linear and continuous operator from Hs(Ωh) to Hs− 1
2 (Kh); 119

ii) there exists a linear and continuous operator Ext from Hs− 1
2 (Kh) to Hs(Ωh) such that 120

γ0 ◦ Ext is the identity operator in Hs− 1
2 (Kh). 121

In the sequel we denote by the symbol f |Kh the trace γ0 f to Kh. 122

2.3. Besov spaces 123

We start by giving the definition of d-set. 124

Definition 1. Let S ⊂ RN be closed and non-empty. S is a d-set, for 0 < d ≤ N, if there exist a 125

Borel measure µ̃ with supp µ̃ = S and two constants c1 = c1(S) > 0 and c2 = c2(S) > 0 such 126

that 127

c1rd ≤ µ̃(B(P, r)) ≤ c2rd ∀ P ∈ S , 0 < r ≤ 1. (5)

Such measure µ̃ is called a d-measure on S . 128

The following result follows from [16]. 129

Proposition 2. Let d = d f . Then the measure µ defined in (3) is a d-measure, hence the Koch 130

snowflake K is a d-set. 131

We recall the definition of Besov spaces specialized to our case. For generalities on 132

Besov spaces, we refer the reader to [38] and [26]. 133
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Definition 2. Let S be a d-set in RN and 0 < γ < 1. We say that f ∈ B2,2
γ (S) if 134

∥ f ∥2
B2,2

γ (S) := ∥ f ∥2
L2(S ,µ̃) +

∫∫
|P−P′ |<3−n

| f (P)− f (P′)|2
|P − P′|d+2γ

dµ̃(P)dµ̃(P′) < ∞.

We now state the trace theorem specialized to our case. 135

Proposition 3. B2,2
d f
2

(K) is the trace space to K of H1(Ω) in the following sense: 136

i) γ0 is a linear and continuous operator from H1(Ω) to B2,2
d f
2

(K); 137

ii) there exists a linear and continuous operator Ext from B2,2
d f
2

(K) to H1(Ω) such that γ0 ◦ Ext 138

is the identity operator in B2,2
d f
2

(K). 139

For the proof we refer to Theorem 1 of Chapter VII in [26], see also [38]. The symbol f |K 140

will denote the trace γ0 f to K. 141

As to the dual of Besov spaces on K, we refer to [27], where it is shown that they 142

coincide with a subspace of Schwartz distributions D′(R2), supported on K. For a complete 143

discussion and description of duals of Besov spaces on d-sets see [27]. 144

2.4. Convergence of Hilbert spaces 145

In this subsection, we recall the definition of convergence of varying real and 146

separable Hilbert spaces (for definitions and proofs, see [32] and [30]). 147

Definition 3. A sequence of Hilbert spaces {Hh}h∈N converges to a Hilbert space H if there exists 148

a dense subspace C ⊂ H and a sequence {Zh}h∈N of linear operators Zh : C ⊂ H → Hh such that 149

lim
h→∞

∥Zhu∥Hh
= ∥u∥H for any u ∈ C.

In the following, we assume that {Hh}h∈N, H and {Zh}h∈N are as in Definition 3. 150

Let be H = {∪hHh} ∪ H. We recall the definition of strong convergence in H. 151

Definition 4 (Strong convergence in H). A sequence of vectors {uh}h∈N strongly converges to 152

u in H if uh ∈ Hh, u ∈ H and there exists a sequence {ũm}m∈N ∈ C tending to u in H such that 153

lim
m→∞

lim
h→∞

∥Zhũm − uh∥Hh
= 0.

We recall the definition of strong convergence in H. 154

Definition 5 (Weak convergence in H). A sequence of vectors {uh}h∈N weakly converges to u 155

in H if uh ∈ Hh, u ∈ H and 156

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N strongly tending to v in H. 157

We point out that the strong convergence implies the weak convergence [32]. 158

Lemma 1. Let {uh}h∈N be a sequence weakly converging to u in H. Then

sup
h
∥uh∥Hh

< ∞, ∥u∥H ≤ lim
h→∞

∥uh∥Hh
.

Moreover, uh → u strongly if and only if ∥u∥H = lim
h→∞

∥uh∥Hh . 159
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We recall some useful properties of the strong convergence of a sequence of vectors 160

{uh}h∈N in H. 161

Lemma 2. Let u ∈ H and let {uh}h∈N be a sequence of vectors uh ∈ Hh. Then {uh}h∈N strongly 162

converges to u in H if and only if 163

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N with vh ∈ Hh weakly converging to a vector v in H. 164

Lemma 3. A sequence of vectors {uh}h∈N with uh ∈ Hh strongly converges to a vector u in H if 165

and only if 166

∥uh∥Hh
→ ∥u∥H and

(uh, Zh(φ))Hh → (u, φ)H for every φ ∈ C.

Lemma 4. Let {uh}h∈N be a sequence with uh ∈ Hh. If ∥uh∥Hh is uniformly bounded, then there 167

exists a subsequence of {uh}h∈N which weakly converges in H. 168

Lemma 5. For every u ∈ H there exists a sequence {uh}h∈N, with uh ∈ Hh, strongly converging 169

to u in H. 170

We denote by L(X) the space of linear and continuous operators on a Hilbert space X. 171

We now recall the notion of strong convergence of operators. 172

Definition 6. A sequence of bounded operators {Bh}h∈N, with Bh ∈ L(Hh), strongly converges to 173

an operator B ∈ L(H) if for every sequence of vectors {uh}h∈N with uh ∈ Hh strongly converging 174

to a vector u in H, the sequence {Bhuh} strongly converges to Bu in H. 175

2.5. Fractional-in-time derivatives 176

We recall the notion of fractional-in-time derivatives in the sense of Riemann-Liouville 177

and Caputo by using the notations of the monograph [19]. 178

Let α ∈ (0, 1). We define 179

gα(t) =


tα−1

Γ(α)
if t > 0,

0 if t ≤ 0,

where Γ is the usual Gamma function. 180

Definition 7. Let Y be a Banach space, T > 0 and let f ∈ C([0, T]; Y) be such that g1−α ∗ f ∈ 181

W1,1((0, T); Y). 182

i) The Riemann-Liouville fractional derivative of order α ∈ (0, 1) is defined as follows:

Dα
t f (t) :=

d
dt

(g1−α ∗ f )(t) =
d
dt

∫ t

0
g1−α(t − τ) f (τ)dτ,

for a.e. t ∈ (0, T]. 183

ii) The Caputo-type fractional derivative of order α ∈ (0, 1) is defined as follows:

∂α
t f (t) := Dα

t ( f (t)− f (0)),

for a.e. t ∈ (0, T]. 184

We stress the fact that Definition 7-ii) gives a weaker definition of (Caputo) fractional 185

derivative with respect to the original one (see [10]), since f is not assumed to be differen- 186
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tiable. Moreover, it holds that ∂α
t (c) = 0 for every constant c ∈ R. 187

We refer to the book [15] for further details on fractional derivatives. 188

In the next sections we will consider problems of the following type: 189

(P̃)

{
∂α

t u − Au = f a.e. in Ω, for all t ∈ (0, T),
u(0) = φ in Ω.

Here, A is a closed linear operator with domain D(A) in a Banach space Y, f : [0, ∞) → Y 190

and φ ∈ Y are given. 191

According to [19, Definition 2.1.4], we give the following notion of strong solution for 192

problem (P̃). 193

Definition 8. Let 0 < T1 ≤ T2 < T. We say that u is a strong solution of (P̃) on the interval 194

I = [0, T] if the following conditions are satisfied. 195

i) (The case α = 1) The function u ∈ C([0, T); Y) is such that u(0) = φ, u(t) ∈ D(A) for all 196

t ∈ [T1, T2] ⊂ I, and ∂tu ∈ C([T1, T2]; Y). Moreover, the equation ∂tu(t) = Au(t) + f (t) 197

is satisfied on [T1, T2] ⊂ I. 198

ii) (The case α ∈ (0, 1)) The function u ∈ C([0, T); Y) is such that u(0) = φ, u(t) ∈ D(A) for 199

t ∈ [T1, T2], and ∂α
t u ∈ C([T1, T2]; Y). Moreover, the equation ∂α

t u(t) = Au(t) + f (t) is 200

satisfied on [T1, T2] ⊂ I. 201

3. The energy forms 202

We now introduce energy forms associated to the formal problems (P) and (Ph) 203

respectively. From now on, let Ω, K, Ωh and Kh be as defined in Section 2.1 and let b denote 204

a strictly positive continuous function in Ω. 205

3.1. The fractal energy form 206

As in [34, Section 3.1], we introduce a Lagrangian measure LK on K and the corre- 207

sponding energy form EK as 208

EK(u, v) =
∫

K
dLK(u, v) (6)

with domain D(K); this space is a Hilbert space with norm 209

∥u∥D(K) =
(
∥u∥2

L2(K) + EK(u, u)
) 1

2 (7)

and it has been characterized in terms of the domains of the energy forms on Ki. 210

In the following we will omit the subscript K, the Lagrangian measure will be simply 211

denoted by L(u, v) and we will set L[u] = L(u, u). 212

As in Proposition 3.1 of [34], the following result holds. 213

Proposition 4. In the previous notations and assumptions, the form EK with domain D(K) is a 214

regular Dirichlet form in L2(K) and the space D(K) is a Hilbert space under the intrinsic norm (7). 215

For the definition and properties of Dirichlet forms, see [18]. 216

We now introduce the Laplace operator on K. Since (EK, D(K)) is a densely defined regular 217

Dirichlet form on L2(K), from [28, Chap. 6, Theorem 2.1] there exists a unique self-adjoint, 218

non-positive operator ∆K on L2(K), with domain D(∆K) ⊆ D(K) dense in L2(K), such that 219

EK(u, v) = −
∫

K
(∆Ku) v dµ, u ∈ D(∆K), v ∈ D(K). (8)
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We denote by (D(K))′ the dual space of D(K). We now introduce the Laplace operator on 220

K as a variational operator from D(K) to (D(K))′ by 221

EK(u, w) = −⟨∆Kz, w⟩(D(K))′ ,D(K), z ∈ D(K), w ∈ D(K), (9)

where ⟨·, ·⟩(D(K))′ ,D(K) denotes the duality pairing between (D(K))′ and D(K). In the 222

following ∆K will denote the Laplace operator both as the self-adjoint operator (see (8)) 223

and as the variational operator (see (9)), leaving the interpretation to the context. 224

We now define the space of functions 225

V(Ω, K) =
{

u ∈ H1(Ω) : u|K ∈ D(K)
}

. (10)

We remark that the space V(Ω, K) is non trivial. 226

We introduce the energy form 227

E[u] =
∫

Ω
|∇u|2dL2 + EK[u|K] +

∫
K

b|u|K|2 dµ (11)

defined on the domain V(Ω, K). In the following we denote by L2(Ω, m) the Lebesgue 228

space with respect to the measure m with 229

dm = dL2 + dµ. (12)

By E(u, v), for u, v ∈ V(Ω, K), we denote the corresponding bilinear form 230

E(u, v) =
∫

Ω
∇u∇v dL2 + EK(u|K, v|K) +

∫
K

bu|Kv|K dµ. (13)

Proposition 5. The form E defined in (11) is a Dirichlet form in L2(Ω, m) and the space V(Ω, K) 231

is a Hilbert space equipped with the scalar product 232

(u, v)V(Ω,K) = (u, v)H1(Ω) + EK(u, v) + (u, v)L2(K). (14)

We denote by ∥u∥V(Ω,K) the norm in V(Ω, K) associated with (14), i.e. 233

∥u∥V(Ω,K) =
(
∥u∥2

H1(Ω) + ∥u∥2
D(K)

) 1
2 . (15)

3.2. The pre-fractal energy forms 234

For each h ∈ N, we construct the energy forms EKh on the pre-fractal boundaries Kh. 235

By ℓ we denote the natural arc-length coordinate on each segment of the polygonal curve 236

Kh and we introduce the coordinates x1 = x1(ℓ), x2 = x2(ℓ), on every segment M(j)
h of Kh, 237

j = 1, . . . , 4h. By dℓ we denote the one-dimensional measure given by the arc-length ℓ. 238

Let u ∈ H1(Kh), where we recall that H1(Kh) is the Sobolev space on the piecewise affine 239

set Kh (see Section 2.2). We define EKh [u] by setting 240

EKh [u] =
4h

∑
j=1

∫
M(j)

h

σh|∇ℓu|Kh |
2 dℓ, (16)

where σh is a positive constant and ∇ℓ denotes the tangential derivative along the pre-fractal 241

Kh. We denote the corresponding bilinear form by EKh(u, v). 242

Let V(Ωh, Kh) be the space of restrictions to Ωh of functions u defined on Ω for which 243

the following norm is finite: 244

∥u∥2
V(Ωh ,Kh)

= ∥u∥2
H1(Ωh)

+ ∥u∥2
H1(Kn)

.
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We point out that this space is not trivial as it contains C∞(Ω) ∩ H1(Ω) (see [25]). 245

We consider now the following energy form defined on V(Ωh, Kh): 246

E(h)[u] =
∫

Ωh

|∇u|2 dL2 + EKh [u|Kh ] + δh

∫
Kh

b|u|Kh |
2 dℓ, (17)

where δh is a positive constant. 247

By E(h)(u, v) we denote the corresponding bilinear form defined on V(Ωh, Kh)×V(Ωh, Kh): 248

E(h)(u, v) =
∫

Ωh

∇u∇v dL2 + EKh(u|Kh , v|Kh) + δh

∫
Kh

bu|Kh v|Kh dℓ. (18)

In the following we consider also the space L2(Ωh, mh), where mh is the measure given by 249

dmh = dL2 + χKh δhdℓ. (19)

Proposition 6. The form E(h) with domain V(Ωh, Kh), defined in (17), is a Dirichlet form in 250

L2(Ωh, mh) and the space V(Ωh, Kh) is a Hilbert space equipped with the norm 251

∥u∥V(Ωh ,Kh)
=

( ∫
Ωh

|∇u|2 dL2 + EKh [u|Kh ] + ∥u∥2
L2(Ωh ,mh)

) 1
2
. (20)

3.3. Resolvents and associated semigroups 252

Since (E, V(Ω, K)) is a densely defined closed bilinear form on L2(Ω, m), from [28, 253

Chapter 6, Theorem 2.1] there exists a unique self-adjoint non-positive operator A on 254

L2(Ω, m), with domain D(A) ⊆ V(Ω, K) dense in L2(Ω, m), such that 255

E(u, v) = (−Au, v)L2(Ω,m), u ∈ D(A), v ∈ V(Ω, K). (21)

Moreover, in Theorem 13.1 of [18] it is proved that to each closed symmetric form E can be
associated a family of linear operators {Gλ, λ > 0} with the property

E(Gλu, v) + λ(Gλu, v)L2(Ω,m) = (u, v)L2(Ω,m), u ∈ L2(Ω, m), v ∈ V(Ω, K).

This family {Gλ, λ > 0} is a strongly continuous resolvent with generator A, which also 256

generates a strongly continuous semigroup {T(t)}t≥0. 257

Proceeding as above, we denote by {Gh
λ, λ > 0}, Ah and {Th(t)}t≥0 the resolvents, 258

the generators and the semigroups associated to E(h), for every h ∈ N, respectively. 259

We recall the main properties of the semigroups {T(t)}t≥0 and {Th(t)}t≥0 in the 260

following Proposition. 261

Proposition 7. Let {T(t)}t≥0 and {Th(t)}t≥0 be the semigroups generated by the operators A and 262

Ah associated to the energy forms in (11) and in (17) respectively. Then {T(t)}t≥0 and {Th(t)}t≥0 263

are analytic contraction semigroups in L2(Ω, m) and L2(Ωh, mh) respectively. 264

The proof follows as in Proposition 3.4 in [34]. 265

4. Existence and uniqueness results 266

4.1. The abstract Cauchy problems 267

Let T be a fixed positive real number. We consider the Cauchy problem 268

(P)

∂α
t u(t) = Au(t) + f (t), 0 < t < T,

u(0) = φ,
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where A : D(A) ⊂ H → H is the generator associated to the energy form E introduced in 269

(11), and f and φ are given functions in suitable Banach spaces. 270

We consider also, for every h ∈ N, the Cauchy problems 271

(Ph)

∂α
t uh(t) = Ahuh(t) + fh(t), 0 < t < T,

uh(0) = φh,

where Ah : D(Ah) ⊂ Hh → Hh is the generator associated to the energy form E(h) intro- 272

duced in (17), and fh and φh are given functions in suitable Banach spaces. 273

We want to prove existence and uniqueness results for the strong solutions of problems 274

(P) and (Ph), for every h ∈ N, in the sense of Definition 8. Firstly, recall the definition of 275

the Wright type function (see [21, Formula (28)]): 276

Φα(z) :=
∞

∑
n=0

(−z)n

n!(−αn + 1 − α)
, 0 < α < 1, z ∈ C.

From [5, page 14], it holds that Φα(t) is a probability density function, i.e. 277

Φα(t) ≥ 0 if t > 0,
∫ +∞

0
Φα(t)dt = 1.

For more properties about the Wright function, among the others we refer to [5], [21], [40]. 278

We recall that the operators A and Ah generate strongly continuous, analytic, contrac-
tion semigroups {T(t)} and {Th(t)} on H and Hh respectively. For t > 0, we define the
operators Sα(t) : H → H and Pα(t) : H → H as follows:

Sα(t)v :=
∫ +∞

0
Φα(τ)T(τtα)v dτ,

Pα(t)v := αtα−1
∫ +∞

0
τΦα(τ)T(τtα)v dτ.

The operators Sα and Pα are known in the literature as resolvent families. We note that the 279

semigroup property does not hold for the operators Sα and Pα unless α = 1. 280

We can define in an analogous way, for every h ∈ N, resolvent families Sh
α(t) and Ph

α (t) 281

on Hh associated to the semigroup {Th(t)}. 282

We now give the existence and uniqueness results for the strong solutions of problems (P) 283

and (Ph) respectively. For both cases, we refer to [19, Theorem 2.1.7]. 284

Theorem 1. Let φ ∈ D(A). Let f ∈ C0,β((0, T); H) for 0 < β < 1 satisfy one of the following 285

two properties: 286

i) (The case α = 1) ∫ T0

0
∥ f (t)∥H dt < ∞

for some T0 > 0; 287

ii) (The case α ∈ (0, 1)) there exists q ∈ ( 1
α , ∞) such that

∫ T0

0
∥ f (t)∥q

H dt < ∞

for some T0 > 0. 288

Then there exists a unique strong solution u of problem (P) in the sense of Definition 8 given by 289

u(t) = T(t)φ +
∫ t

0
T(t − τ) f (τ)dτ (22)
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if α = 1, and by 290

u(t) = Sα(t)φ +
∫ t

0
Pα(t − τ) f (τ)dτ (23)

if 0 < α < 1, respectively. 291

Theorem 2. For every h ∈ N, let φh ∈ D(Ah). Let fh ∈ C0,β((0, T); Hh) for 0 < β < 1 satisfy 292

one of the following two properties: 293

i) (The case α = 1) ∫ T0

0
∥ fh(t)∥Hh dt < ∞

for some T0 > 0; 294

ii) (The case α ∈ (0, 1)) there exists q ∈ ( 1
α , ∞) such that

∫ T0

0
∥ fh(t)∥

q
Hh

dt < ∞

for some T0 > 0. 295

Then, for every h ∈ N there exists a unique strong solution uh of problem (Ph) in the sense of 296

Definition 8 given by 297

uh(t) = Th(t)φh +
∫ t

0
Th(t − τ) fh(τ)dτ (24)

in α = 1, and by 298

uh(t) = Sh
α(t)φ +

∫ t

0
Ph

α (t − τ) fh(τ)dτ (25)

in 0 < α < 1, respectively. 299

4.2. The Venttsel’ boundary value problems 300

In this section we prove that the strong solutions of problems (P) and (Ph) solve 301

respectively problems (P̄) and (P̄h) formally stated in the Introduction. We start with the 302

fractal case. 303

Theorem 3. Let u be the solution of problem (P). Then we have, for every fixed t ∈ (0, T),

∂α
t u(t, P)− ∆u(t, P) = f (t, P) for a.e. P ∈ Ω,

⟨∂α
t u, z⟩L2(K),L2(K) + EK(u, z) +

〈
∂u
∂n , z

〉
(D(K))′ ,D(K)

+⟨bu, z⟩L2(K),L2(K) = ⟨ f , z⟩L2(K),L2(K) for every z ∈ D(K),

u(0, P) = φ(P) for P ∈ Ω.

Moreover, ∂u
∂n ∈ C((0, T); (B2,2

d f
2

(K))′). 304

Proof. Following the approach of the proof of Theorem 6.1 in [34] and taking into account 305

Theorem 1, we obtain the thesis. 306

As to the pre-fractal case, the following result holds. 307



Version June 2, 2023 submitted to Fractal Fract. 12 of 16

Theorem 4. For every h ∈ N, let uh be the solution of problem (Ph). Then we have, for every fixed
t ∈ (0, T),

∂α
t uh(t, P)− ∆uh(t, P) = fh(t, P) for a.e. P ∈ Ωh,

δh⟨∂α
t uh, z⟩L2(Kh),L2(Kh)

+ EKh(uh, z) +
〈

∂uh
∂nh

, z
〉

H− 1
2 (Kh),H

1
2 (Kh)

+δh⟨buh, z⟩L2(Kh),L2(Kh)
= δh⟨ fh, z⟩L2(Kh),L2(Kh)

for every z ∈ H
1
2 (Kh),

uh(0, P) = φh(P) for P ∈ Ωh.

Moreover, ∂uh
∂nh

∈ C((0, T); L2(Kh)). 308

Proof. Following the approach of the proof of Theorem 6.2 in [34] and taking into account 309

Theorem 2, we obtain the thesis. 310

5. Convergence results 311

In this section we study the asymptotic behavior of the solution uh of the following 312

homogeneous problem associated to (Ph), i.e. 313

(P0
h )

∂α
t uh(t) = Ahuh(t), 0 < t < T,

uh(0) = φh,

for every h ∈ N. Namely, we will prove that {uh} converges to the unique strong solution 314

of the homogeneous problem associated to (P): 315

(P0)

∂α
t u(t) = Au(t), 0 < t < T,

u(0) = φ.

The convergence will be achieved by the Mosco-Kuwae-Shioya convergence of the energy 316

forms. To this aim, we recall some preliminary definitions and results. 317

5.1. Convergence of spaces and M-convergence of the energy forms 318

We define the space H := L2(Ω, m) where m is the measure in (12). We also introduce
the sequence {Hh}h∈N with Hh := {L2(Ω) ∩ L2(Ωh, mh)} where mh is the measure in (19).
We endow these spaces with the norms

∥u∥2
H = ∥u∥2

L2(Ω) + ∥u|K∥2
L2(K,µ), ∥u∥2

Hh
= ∥u∥2

L2(Ωh)
+ ∥u|Kh∥

2
L2(Kh ,δhℓ)

Proposition 8. Let δh =
( 3

4
)h. The sequence of Hilbert spaces {Hh}h∈N converges in the sense of 319

Definition 3 to the Hilbert space H. 320

For the proof, see Proposition 4.1 in [34]. 321

We now introduce the notion of M-K-S convergence of forms, firstly given by Mosco in
[35] for a fixed Hilbert space and then extended by Kuwae and Shioya (see [32, Definition
2.11]) to the case of varying Hilbert spaces .
We extend the forms E defined in (11) and E(h) defined in (17) to the whole spaces H and
Hh respectively by setting

E[u] = +∞ if u ∈ H \ V(Ω, K)

and
E(h)[u] = +∞ if u ∈ Hh \ V(Ωh, Kh).
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Definition 9. Let Hh be a sequence of Hilbert spaces converging to a Hilbert space H. A sequence 322

of forms
{

E(h)
}

defined in Hh M-K-S-converges to a form E defined in H if the following conditions 323

hold: 324

i) for every {vh} ∈ Hh weakly converging to u ∈ H in H

lim
h→∞

E(h)[vh] ≥ E[u];

ii) for every u ∈ H there exists a sequence {wh}, with wh ∈ Hh strongly converging to u in H, 325

such that 326

lim
h→∞

E(h)[wh] ≤ E[u].

We now state the convergence of the approximating energy forms E(h) in the context 327

of varying Hilbert spaces. 328

Theorem 5. Let δh =
( 3

4
)h and σh = δ−1

h . Then the sequence {E(h)} defined in (17) converges in 329

the sense of Definition 9 to the form E defined in (11). 330

For the proof, we refer to Theorem 4.3 in [34]. 331

5.2. Convergence of the solutions of the abstract Cauchy problems 332

We are now ready to prove the main theorem of this section, i.e. the convergence of 333

the sequence {uh} of strong solutions of problems (P0
h ) to the unique strong solution u of 334

problem (P0). Crucial tools will be the Mosco-Kuwae-Shioya convergence of the energy 335

forms and the use of the representation formulas for the strong solutions given by (23) and 336

(25). We remark that here we extend to the setting of varying Hilbert spaces the results in 337

[7]. 338

We consider the one-dimensional Lebesgue measure dt on [T1, T2]. Let mh be the mea- 339

sure introduced in (19) and m be the measure introduced in (12). The space L2([T1, T2]× 340

Ω, dt × dmh) is isomorphic to L2([T1, T2]; Hh) and L2([T1, T2]× Ω, dt × dm) is isomorphic 341

to L2([T1, T2]; H). If we denote by Fh = L2([T1, T2]; Hh) and by F = L2([T1, T2]; H), it holds 342

that Fh converges to F in the sense of Definition 3, where the set C is now C([T1, T2]× Ω) 343

and Zh is the identity operator on C. 344

We denote by F = {∪hFh} ∪ F. In the following Proposition, we recall the characteriza- 345

tion of strong convergence in F (by using Lemma 2 and 3). 346

Proposition 9. A sequence of vectors {uh}h∈N strongly converges to u in F if one of the following 347

holds: 348

i)


∫ T2

T1

∥uh(t)∥2
Hh

dt −−−−→
h→+∞

∫ T2

T1

∥u(t)∥2
H dt

∫ T2

T1

(uh(t), ψ(t))Hh dt −−−−→
h→+∞

∫ T2

T1

(u(t), ψ(t))H dt
(26)

for every ψ ∈ C([T1, T2]× Ω); 349

ii)
∫ T2

T1

(uh(t), vh(t))Hh dt −−−−→
h→+∞

∫ T2

T1

(u(t), v(t))H dt (27)

for every sequence {vh}h∈N strongly converging to v in F . 350

Theorem 6. Let u(t, x) = Sα(t)φ(x) and uh(t, x) = Sh
α(t)φh(x) be the unique strong solutions 351

of problems (P0) and (P0
h ), for every h ∈ N, according to Theorems 1 and 2 respectively. Let δh be 352

as in Theorem 5. If {φh} strongly converges to φ in H and there exists a constant C > 0 such that 353

∥φh∥D(Ah)
< C for every h ∈ N, (28)
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then: 354

i) {uh(t)} converges to u(t) in H for every fixed t ∈ [T1, T2] ⊂ [0, T]; 355

ii) {uh} converges to u in F . 356

Proof. If α = 1, the proof follows as in Theorem 5.3 in [34] with small changes. 357

Let now 0 < α < 1. 358

First, we prove i). By using the characterization of the strong convergence given in
Lemma 2, we have to prove that for every t ∈ [T1, T2] ⊂ [0, T]

(uh, vh)Hh −−−−→
n→+∞

(u, v)H

for every sequence {vh}h∈N with vh ∈ Hh weakly converging in H to a vector v ∈ H. 359

We first point out that, from Theorem 5, Theorem 2.8 in [30] and Theorem 2.4 in [32], it 360

follows that for every t ∈ [T1, T2] 361

Th(t)φh −−−−→
n→+∞

T(t)φ in H (29)

since φh → φ in H (see Definition 6). 362

From the representation formula (25) of Theorem 2 we have

(uh, vh)Hh =
∫

Ωh

Sh
α φh vh dL2 + δh

∫
Kh

Sh
α φh vh dℓ

and
(u, v)H =

∫
Ω

Sα φ v dL2 +
∫

K
Sα φ v dµ.

Recalling the definitions of Sh
α and Sα, we obtain that 363

(uh, vh)Hh − (u, v)H =
∫ ∞

0
Φα(τ)

( ∫
Ωh

Th(τtα)φh vh dL2 −
∫

Ω
T(τtα)φ v dL2

)
dτ

+
∫ ∞

0
Φα(τ)

(
δh

∫
Kh

Th(τtα)φh vh dℓ−
∫

K
T(τtα)φ v dµ

)
dτ =

=
∫ ∞

0
Φα(τ)

[
(Th(τtα)φh, vh)Hh − (T(τtα)φ, v)H

]
dτ.

From (29) and the weak convergence of vh to v, we have that for every t ∈ [T1, T2]

(Th(τtα)φh, vh)Hh
→ (T(τtα)φ, v)H .

By using Lemma 1, (28) and the contraction property of Th we have that there exists
a constant C > 0 (independent from h) such that∣∣∣(Th(τtα)φh, vh)Hh

∣∣∣ ≤ C.

From the dominated convergence theorem, the claim follows directly. 364

Now we prove ii). From Proposition 9 we have to prove that 365

∥uh∥Fh
→ ∥u∥F, (30)

(uh, ψ)Fh → (u, ψ)F ∀ψ ∈ C([T1, T2]× Ω). (31)

We note that

∥uh(t)∥Hh
≤

∫ +∞

0
Φα(τ)∥Th(τtα)φh∥Hh dτ ≤ C ∀ t ∈ [T1, T2],
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where the last inequality follows from the properties of the Wright function Φα, Proposition 366

7 and (28). 367

Thus, the sequence
{
∥uh(t)∥Hh

}
is equibounded in [T1, T2]. Moreover, from i) we

have that for every t ∈ [T1, T2]

∥uh(t)∥Hh
→ ∥u(t)∥H .

Hence, from the dominated convergence theorem, (30) is achieved. 368

We now go to (31). From i) we have that for every t ∈ [T1, T2] 369

(uh(t), ψ(t))Hh −−−−→
n→+∞

(u(t), ψ(t))H ∀ψ ∈ C([T1, T2]× Ω).

Since ∣∣(uh(t), ψ(t))Hh

∣∣ ≤ C∥ψ∥C([T1,T2]×Ω),

the dominated convergence theorem yields

(uh, ψ)Fh −−−−→
n→+∞

(u, ψ)F.

370

Remark 1. We note that the convergence of φh to φ in H and the equi-boundeness hypothesis (28) 371

imply the convergence in F . 372

Remark 2. We stress the fact that the geometry considered in this paper is a prototype. Actually, 373

our results can be extended to the case of domains whose boundaries are quasi-filling variable Koch 374

curves. Indeed, Theorem 5 can be extended to these geometries by adapting Theorem 3.2 in [9] to the 375

framework of varying Hilbert spaces, thus allowing us to state a result analogous to Theorem 6. 376
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