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Abstract. We study a nonlocal Robin–Venttsel’-type problem for the re-
gional fractional p-Laplacian in an extension domain Ω with boundary
a d-set. We prove existence and uniqueness of a strong solution via a
semigroup approach. Markovianity and ultracontractivity properties are
proved. We then consider the elliptic problem. We prove existence, unique-
ness and global boundedness of the weak solution.
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Introduction

Aim of this paper is to study a parabolic problem for the regional fractional
p-Laplacian with nonlocal Robin–Venttsel’ boundary conditions in extension
domains.

Nowadays the literature on fractional operators is huge, due to the fact
that they describe mathematically many physical phenomena exhibiting de-
viations from standard diffusion, the so-called anomalous diffusion. This is
an important topic not only in physics, but also in finance and probability
[1,29,42,44].

Several models appear in the literature to describe such diffusion, e.g.
the fractional Brownian motion, the continuous time random walk, the Lévy
flight as well as random walk models based on evolution equations of single
and distributed fractional order in time and/or space [21,26,41,44,46].

In the present paper, we consider the following evolution problem for
the regional fractional p-Laplacian with nonlocal dynamical Robin–Venttsel’
boundary conditions.
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The problem can be formally stated as:

(P̃ )

⎧
⎪⎨

⎪⎩

∂u
∂t (t, x) + (−Δp)s

Ωu(t, x) = f(t, x) in (0, T ] × Ω,
∂u
∂t + N p′(1−s)

p u + b|u|p−2u + pΘp,γ(u) = g on (0, T ] × ∂Ω,

u(0, x) = u0(x) in Ω,

where Ω ⊂ R
N is an (ε, δ) domain satisfying suitable hypotheses (see

Sect. 1.2 for details).
Here (−Δp)s

Ω denotes the regional fractional p-Laplacian (see (2.1)), s ∈
(0, 1), p > 1, N p′(1−s)

p u is the fractional normal derivative to be suitably
defined, f , g, b, u0 are given functions, T is a positive number and Θp,γ(u)
is a nonlocal term which plays the role of a regional fractional p-Laplacian of
order γ ∈ (0, 1) on the boundary (see (3.1)).

Boundary value problems for the regional fractional Laplacian with Dirich-
let, Neumann, Robin or Venttsel’-type boundary conditions on Lipschitz do-
mains are studied in [23–25], along with the physical motivations. The case of
the fractional Laplacian with Robin boundary conditions in Lipschitz domains
has been recently investigated in [12]. The results on the regional fractional
p-Laplacian in piecewise smooth domains are more recent [22,51,52].

Venttsel’-type boundary value problems in irregular domains (possibly
of fractal type) for s = 1 are studied e.g. in [13,14,17,34–36,38]. The Robin–
Venttsel’ problem for the (linear) regional fractional Laplacian in irregular
domains has been investigated recently in [15], where also a constructive ap-
proach is developed. The nonlinear case of the regional fractional p-Laplacian
with local boundary conditions is studied in [16] in Koch-type cylinders.

In the present paper we generalize the results of [16] to the class of
those extension domains which are (ε, δ) domains with boundary a d-set (see
Sect. 1.2), and we focus on the regularity properties of the solution of the prob-
lem at hand. We remark that (ε, δ) domains can have a highly non-rectifiable
boundary, possibly of fractal type.

There are very few regularity results for Venttsel’ problems in fractal
domains (see [34,39] for the local case), which are also crucial in view of the
numerical approximation. To our knowledge, the proof of regularity results for
fractional Venttsel’ problems in irregular domains is still open and it is the
goal of this paper.

A key point is to investigate if the presence of a “fractal fractional Lapla-
cian” affects the regularity. In the parabolic case, this is achieved by proving
regularity properties of the associated semigroup, namely its ultracontractivity.
This result, in turn, deeply relies on a fractional logarithmic Sobolev inequal-
ity, suitably tailored for the problem at hand, whence it clearly appears the
role of the fractal boundary. In the elliptic case, regularity results for the weak
solution can be obtained via a powerful tool by Murthy and Stampacchia [43].

More precisely, we firstly focus on giving a rigorous formulation of the par-
abolic problem for the regional fractional p-Laplacian with dynamical bound-
ary conditions in extension domains. This will be achieved by introducing a
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suitable notion of p-fractional normal derivative on irregular sets, via a gener-
alized fractional Green formula, see Theorem 2.2.

We then consider the fractional energy functional Φp,s defined in (3.2),
which is proper, convex and weakly lower semicontinuous, and the correspond-
ing associated subdifferential A. In Theorem 3.3 we prove, via a semigroup
approach, existence and uniqueness of a strong solution for a suitable abstract
Cauchy problem (P ) for the operator A. Then, via Theorem 3.6, we prove
that problem (P̃ ) is the strong formulation of the abstract problem (P ). In
Theorem 3.10 we prove that the associated (nonlinear) semigroup is order-
preserving and non-expansive on L∞, and in Theorem 4.7 we prove that it is
ultracontractive.

We then consider the elliptic problem. After proving existence and unique-
ness of a weak solution in suitable functional spaces in Theorem 5.1, we prove
its global boundedness in Theorem 5.4 via Lemma 5.2.

The plan of the paper is the following.
In Sect. 1 we introduce the extension domain Ω and we recall some pre-

liminary results on fractional Sobolev spaces, embeddings and traces.
In Sect. 2 we introduce the regional fractional p-Laplacian and the notion

of weak p-fractional normal derivative by proving a generalized p-fractional
Green formula.

In Sect. 3 we introduce the energy functional Φp,s which is proper, convex
and weakly lower semicontinuous and the associated subdifferential A which is
the generator of a nonlinear C0 semigroup. We prove existence and uniqueness
of a strong solution for the corresponding abstract Cauchy problem and we give
a strong interpretation. Moreover, we prove that the semigroup is Markovian.

In Sect. 4 we prove that the associated semigroup is ultracontractive. The
proof, as usual, relies on a fractional logarithmic-Sobolev inequality adapted
to the present case.

In Sect. 5 we consider the elliptic problem. We prove existence and
uniqueness of the weak solution and its global boundedness.

1. Preliminaries

1.1. Functional spaces

Let G (resp. S) be an open (resp. closed) set of RN . By Lp(G), for p > 1, we
denote the Lebesgue space with respect to the Lebesgue measure dLN , which
will be left to the context whenever that does not create ambiguity. By Lp(∂G)
we denote the Lebesgue space on ∂G with respect to a Hausdorff measure μ
supported on ∂G. By D(G) we denote the space of infinitely differentiable func-
tions with compact support on G. By C(S) we denote the space of continuous
functions on S.

By W s,p(G), for 0 < s < 1, we denote the fractional Sobolev space of
exponent s. Endowed with the following norm

‖u‖p
W s,p(G) = ‖u‖p

Lp(G) +
∫∫

G×G

|u(x) − u(y)|p
|x − y|N+sp

dLN (x)dLN (y),
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it becomes a Banach space. Moreover, we denote by |u|W s,p(G) the seminorm
associated to ‖u‖W s,p(G) and we define, for every u, v ∈ W s,p(G),

(u, v)s,p :=
∫∫

G×G
|u(x)−u(y)|p−2 (u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y).

In the following we will denote by |A| the Lebesgue measure of a subset
A ⊂ R

N . For f ∈ W s,p(G), we define the trace operator γ0 as

γ0f(x) := lim
r→0

1
|B(x, r) ∩ G|

∫

B(x,r)∩G
f(y) dLN (y)

at every point x ∈ G where the limit exists. The above limit exists at quasi
every x ∈ G with respect to the (s, p)-capacity (see Definition 2.2.4 and Theo-
rem 6.2.1 page 159 in [2]). From now one we denote the trace operator simply
by f |G ; sometimes we will omit the trace symbol and the interpretation will
be left to the context.

For 1 ≤ q, r ≤ ∞, we introduce the space

X
q,r(Ω, ∂Ω) := Lq(Ω) × Lr(∂Ω) = {(f, g) : f ∈ Lq(Ω) and g ∈ Lr(∂Ω)} ,

(1.1)
endowed with the norm

‖(f, g)‖q,r = ‖(f, g)‖Xq,r(Ω,∂Ω) := ‖f‖Lq(Ω) + ‖g‖Lr(∂Ω).

If q = r < ∞, we denote the above space simply by X
q(Ω, ∂Ω) and we

endow it with the following norm:

‖(f, g)‖q
q = ‖(f, g)‖q

Xq(Ω,∂Ω) := ‖f‖q
Lq(Ω) + ‖g‖q

Lq(∂Ω).

If q = r = ∞, we endow X
∞(Ω, ∂Ω) with the following norm:

‖(f, g)‖∞ := max
{
‖f‖L∞(Ω), ‖g‖L∞(∂Ω)

}
.

In the following, for a function f with well-defined trace f |∂Ω on ∂Ω, we
simply denote f = (f, f |∂Ω).

1.2. (ε, δ) domains and trace theorems

We now recall the definition of (ε, δ) domain. For details see [30].

Definition 1.1. Let F ⊂ R
N be open and connected. For x ∈ F , let d(x) :=

inf
y∈Fc

|x − y|. We say that F is an (ε, δ) domain if, whenever x, y ∈ F with

|x − y| < δ, there exists a rectifiable arc γ ∈ F joining x to y such that

�(γ) ≤ 1
ε
|x − y| and d(z) ≥ ε|x − z||y − z|

|x − y| for every z ∈ γ.

In this paper, we consider two particular classes of (ε, δ) domains Ω ⊂ R
N .

More precisely, Ω can be a (ε, δ) domain having as boundary either a d-set or
an arbitrary closed set in the sense of [31]. For the sake of simplicity, from now
on we restrict ourselves to the case in which ∂Ω is a d-set (see [32]).
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Definition 1.2. A closed nonempty set M ⊂ R
N is a d-set (for 0 < d ≤ N) if

there exist a Borel measure μ with suppμ = M and two positive constants c1

and c2 such that

c1r
d ≤ μ(B(x, r) ∩ M) ≤ c2r

d ∀x ∈ M. (1.2)

The measure μ is called d-measure.

In the following, μ(∂Ω) denotes the Hausdorff measure of ∂Ω.
We suppose that Ω can be approximated by a sequence {Ωn} of domains

such that for every n ∈ N:

(H)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ωn is bounded and Lipschitz;
Ωn ⊆ Ωn+1;

Ω =
∞⋃

n=1

Ωn.

The reader is referred to [15,16] for examples of such domains.
We recall the definition of Besov space specialized to our case. For gen-

eralities on Besov spaces, we refer to [32].

Definition 1.3. Let F be a d-set with respect to a d-measure μ and α = s−N−d
p .

Bp,p
α (F) is the space of functions for which the following norm is finite:

‖u‖p
Bp,p

α (F)
= ‖u‖p

Lp(G) +
∫∫

|x−y|<1

|u(x) − u(y)|p
|x − y|d+αp

dμ(x) dμ(y).

Let p′ be the Hölder conjugate exponent of p. In the following, we will
denote the dual of the Besov space Bp,p

α (F) with (Bp,p
α (F))′; we point out that

this space coincides with the space Bp′,p′
−α (F) (see [33]).

From now on, let

α := s − N − d

p
∈ (0, 1). (1.3)

We now state a trace theorem for functions in W s,p(Ω), where Ω is a bounded
(ε, δ) domain with boundary ∂Ω a d-set. For the proof, we refer to [32, Theo-
rem 1, Chapter VII].

Proposition 1.4. Let N−d
p < s < 1. Bp,p

α (∂Ω) is the trace space of W s,p(Ω) in
the following sense:
(i) γ0 is a continuous linear operator from W s,p(Ω) to Bp,p

α (∂Ω);
(ii) there exists a continuous linear operator Ext from Bp,p

α (∂Ω) to W s,p(Ω)
such that γ0 ◦ Ext is the identity operator in Bp,p

α (∂Ω).

We point out that, if Ω ⊂ R
N is a Lipschitz domain, its boundary ∂Ω is

a (N − 1)-set. Hence, the trace space of W s,p(Ω) is Bp,p

s− 1
p

(∂Ω), and the latter

space coincides with W s− 1
p ,p(∂Ω).

The following result provides us with an equivalent norm on W s,p(Ω).
The proof can be achieved by adapting the proof of [50, Theorem 2.3].
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Theorem 1.5. Let Ω ⊂ R
N be a (ε, δ) domain having as boundary a d-set,

with p > 1 and N−d
p < s < 1. Then there exists a positive constant C =

C(Ω, N, s, p, d) such that for every u ∈ W s,p(Ω)

∫

Ω

|u|p dLN ≤ C

(
CN,p,s

2

∫∫

Ω×Ω

|u(x) − u(y)|p
|x − y|N+sp

dLN (x)dLN (y) +

∫

∂Ω

|u|p dμ

)

.

(1.4)

Here, CN,p,s is the positive constant defined in Sect. 2.
Finally, we recall the following important extension property which holds

for (ε, δ) domains having as boundary a d-set. For details, we refer to Theorem
1, page 103 and Theorem 3, page 155 in [32].

Theorem 1.6. Let 0 < s < 1. There exists a linear extension operator
Ext : W s,p(Ω) → W s,p(RN ) such that

‖Ext w‖p
W s,p(RN )

≤ C̄s‖w‖p
W s,p(Ω), (1.5)

with C̄s depending on s.

Domains Ω satisfying property (1.5) are the so-called W s,p-extension do-
mains.

1.3. Sobolev embeddings

We now recall some important Sobolev-type embeddings for the fractional
Sobolev space W s,p(Ω) where Ω is a W s,p-extension domain with boundary a
d-set, see [19, Theorem 6.7] and [32, Lemma 1, p. 214] respectively.

We set

p∗ :=
Np

N − sp
and p̄ :=

dp

N − sp
.

Theorem 1.7. Let s ∈ (0, 1) and p ≥ 1 be such that sp < N . Let Ω ⊆ R
N be a

W s,p-extension domain. Then W s,p(Ω) is continuously embedded in Lq(Ω) for
every q ∈ [1, p∗], i.e. there exists a positive constant C = C(N, s, p,Ω) such
that, for every u ∈ W s,p(Ω),

‖u‖Lq(Ω) ≤ C‖u‖W s,p(Ω). (1.6)

Theorem 1.8. Let p > 1 and let s ∈ (0, 1) be such that N − d < sp < N .
Let Ω ⊆ R

N be a W s,p-extension domain having as boundary ∂Ω a d-set, for
0 < d ≤ N . Then W s,p(Ω) is continuously embedded in Lq(∂Ω) for every
q ∈ [1, p̄ ], i.e. there exists a positive constant C = C(N, s, p, d,Ω) such that,
for every u ∈ W s,p(Ω),

‖u‖Lq(∂Ω) ≤ C‖u‖W s,p(Ω). (1.7)

We point out that p∗ ≥ p̄ ≥ p.
We define the average of u on Ω and on ∂Ω respectively as

ūΩ :=
1

|Ω|

∫

Ω

u dLN and ū∂Ω :=
1

μ(∂Ω)

∫

∂Ω

u dμ. (1.8)
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Using Theorems 1.7 and 1.8 and Hölder inequality, one can easily prove
that

‖u − ūΩ‖Lp∗ (Ω) ≤ C|u|W s,p(Ω) (1.9)

and
‖u − ū∂Ω‖Lp̄(∂Ω) ≤ C|u|W s,p(Ω). (1.10)

We point out that (1.9) and (1.10) imply that, for every 1 < q ≤ p∗, it
holds

‖u‖p
q ≤ 2p−1

(
C|u|pW s,p(Ω) + |ūΩ|p|Ω|

p
q + |ū∂Ω|pμ(∂Ω)

p
q

)
. (1.11)

2. The regional fractional p-Laplacian and the Green formula

We recall the definition of the regional fractional p-Laplacian. We refer to [51]
and the references listed in.

Let s ∈ (0, 1) and p > 1. For G ⊆ R
N , we define the space

Lp−1
s (G) :=

{

u : G → R measurable :
∫

G

|u(x)|p−1

(1 + |x|)N+sp
dLN (x) < ∞

}

.

The regional fractional p-Laplacian (−Δp)s
G is defined as follows, for x ∈ G:

(−Δp)s
Gu(x) = CN,p,sP.V.

∫

G
|u(x) − u(y)|p−2 u(x) − u(y)

|x − y|N+sp
dLN (y)

= CN,p,s lim
ε→0+

∫

{y∈G : |x−y|>ε}
|u(x) − u(y)|p−2 u(x) − u(y)

|x − y|N+sp
dLN (y),

(2.1)
provided that the limit exists, for every function u ∈ Lp−1

s (G). The positive
constant CN,p,s is defined as follows:

CN,p,s =
s22sΓ(ps+p+N−2

2 )

π
N
2 Γ(1 − s)

,

where Γ is the Euler function.
We now introduce the notion of p-fractional normal derivative on (ε, δ)

domains having as boundary a d-set and satisfying hypotheses (H) in Sect. 1.2
via a p-fractional Green formula by suitably generalizing the results in [16].
We recall its proof for the reader’s convenience. For the case p = 2, we refer
to [27,28] for the smooth case and to [15] for irregular sets.

We define the space

V ((−Δp)s
Ω, Ω) := {u ∈ W s,p(Ω) : (−Δp)s

Ωu ∈ Lp′
(Ω) in the sense of distributions},

which is a Banach space equipped with the norm

‖u‖V ((−Δp)s
Ω,Ω) := ‖u‖W s,p(Ω) + ‖(−Δp)s

Ωu‖Lp′ (Ω).

We first define the p-fractional normal derivative on Lipschitz domains.
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Definition 2.1. Let T ⊂ R
N be a Lipschitz domain. Let u ∈ V ((−Δp)s

T , T ) :=
{u ∈ W s,p(T ) : (−Δp)s

T u ∈ Lp′
(T ) in the sense of distributions}. We say

that u has a weak p-fractional normal derivative in (W s− 1
p ,p(∂T ))′ if there

exists g ∈ (W s− 1
p ,p(∂T ))′ such that

〈g, v|∂Ω〉
(W

s− 1
p

,p
(∂T ))′,W s− 1

p
,p

(T )
= −

∫

T
(−Δp)s

T u v dLN

+
CN,p,s

2

∫∫

T ×T
|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y)

(2.2)

for every v ∈ W s,p(T ). In this case, g is uniquely determined and we call
Cp,sN p′(1−s)

p u := g the weak p-fractional normal derivative of u, where

Cp,s :=
(p − 1)C1,p,s

(sp − (p − 2))(sp − (p − 2) − 1)

∫ ∞

0

|t − 1|(p−2)+1−sp − (t ∨ 1)p−sp−1

tp−sp
dt.

We point out that, when s → 1− in (2.2), we recover the quasi-linear
Green formula for Lipschitz domains [8].

Theorem 2.2. (Fractional green formula) There exists a bounded linear opera-
tor N p′(1−s)

p from V ((−Δp)s
Ω,Ω) to (Bp,p

α (∂Ω))′.
The following generalized Green formula holds for every u ∈ V ((−Δp)s

Ω,Ω)
and v ∈ W s,p(Ω):

Cp,s

〈
N p′(1−s)

p u, v|∂Ω

〉

(B
p,p
α (∂Ω))′,Bp,p

α (∂Ω)
= −

∫

Ω

(−Δp)s
Ωu v dLN

+
CN,p,s

2

∫∫

Ω×Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y).

(2.3)

Proof. For u ∈ V ((−Δp)s
Ω,Ω) and v ∈ W s,p(Ω), we define

〈l(u), v〉 := −
∫

Ω

(−Δp)s
Ωu v dLN +

CN,p,s

2
(u, v)s,p.

From Hölder inequality, we get

| 〈l(u), v〉| ≤ ‖(−Δp)s
Ωu‖

Lp′
(Ω)

‖v‖Lp(Ω) +
CN,p,s

2
‖u‖W s,p(Ω)‖v‖W s,p(Ω)

≤ C ‖u‖V ((−Δp)s
Ω,Ω)‖v‖W s,p(Ω) (2.4)

We now prove that the operator l(u) is independent from the choice of
v and it is an element of (Bp,p

α (∂Ω))′. From Proposition 1.4, for every v ∈
Bp,p

α (∂Ω) there exists a function w̃ := Ext v ∈ W s,p(Ω) such that

‖w̃‖W s,p(Ω) ≤ C‖v‖Bp,p
α (∂Ω) (2.5)

and w̃|∂Ω = v μ-almost everywhere. From (2.3) we have that

Cp,s

〈
N p′(1−s)

p u, v
〉

(Bp,p
α (∂Ω))′,Bp,p

α (∂Ω)
= 〈l(u), w̃〉.
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The thesis follows from (2.4) and (4.21).
We now recall that Ω is approximated by a sequence of Lipschitz domains

Ωn, for n ∈ N, satisfying conditions (H) in Sect. 1.2. From (2.2) we have that

Cp,s

〈
N p′(1−s)

p u, v|∂Ω

〉

(W
s− 1

p
,p

(∂Ωn))′,W
s− 1

p
,p

(∂Ωn)
= −

∫

Ω

χΩn
(−Δp)s

Ωu v dLN

+
CN,p,s

2

∫∫

Ω×Ω

χΩn
(x)χΩn

(y)|u(x) − u(y)|p−2

(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dLN (x)dLN (y).

From the dominated convergence theorem, we have

lim
n→∞

Cp,s

〈
N p′(1−s)

p u, v|∂Ω

〉

(W
s− 1

p
,p

(∂Ωn))′,W
s− 1

p
,p

(∂Ωn)

= lim
n→∞

(

−
∫

Ωn

(−Δp)s
Ωu v dLN +

CN,p,s

2

∫∫

Ωn×Ωn

|u(x) − u(y)|p−2

(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dLN (x)dLN (y)
)

= −
∫

Ω

(−Δp)s
Ωu v dLN

+
CN,p,s

2
(u, v)s,p = 〈l(u), v〉

for every u ∈ V ((−Δp)s
Ω,Ω) and v ∈ W s,p(Ω). Hence, we define the p-fractional

normal derivative on Ω as

〈Cp,sN p′(1−s)
p u, v|∂Ω〉(Bp,p

α (∂Ω))′,Bp,p
α (∂Ω) := −

∫

Ω

(−Δp)s
Ωu v dLN +

CN,p,s

2
(u, v)s,p.

�

Remark 2.3. We note that p′(1−s) = 2−β, where β = ps−1
p−1 +1, thus recovering

the usual notation for the p-fractional normal derivative in (2.3).
Moreover, by proceeding as in [16, Remark 3.3], when s → 1− in (2.3)

we recover the Green formula proved in [37] for fractal domains.

3. The evolution problems

3.1. The energy functional

From now on, we suppose that p ≥ 2, sp < N and that b ∈ C(Ω) is strictly
positive and continuous on Ω. We denote by H := X

2(Ω, ∂Ω) the Lebesgue
space defined in Sect. 1.1.

We introduce the linear and continuous operator Θp,γ : Bp,p
α (∂Ω) →

(Bp,p
α (∂Ω))′ defined as

〈Θp,γ(u), v〉 := (3.1)
1
p

∫∫

∂Ω×∂Ω

ζ(x, y)
|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))

|x − y|d+γp
dμ(x) dμ(y),
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where ζ ∈ L∞(∂Ω × ∂Ω) is such that ζ ≥ 0, 〈·, ·〉 denotes the duality pairing
between (Bp,p

α (∂Ω))′ and Bp,p
α (∂Ω) and γ ∈ (0, α], where α is defined in (1.3).

For every u = (u, u|∂Ω) ∈ H, we introduce the following energy func-
tional, with effective domain D(Φp,s) = W s,p(Ω):

Φp,s[u] :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CN,p,s

2p

∫∫

Ω×Ω

|u(x)−u(y)|p
|x−y|N+sp

dLN (x)dLN (y)

+
1

p

∫

∂Ω
b|u|∂Ω|p dµ + 〈Θp,γ(u|∂Ω), u|∂Ω〉 if u ∈ D(Φp,s),

+∞ ifu ∈ H \ D(Φp,s),

(3.2)

We remark that, if u ∈ W s,p(Ω), from Proposition 1.4 its trace u|∂Ω, and
hence the couple u = (u, u|∂Ω), is well-defined. In the following, with an abuse
of notation, we will write u ∈ W s,p(Ω).

Proposition 3.1. Φp,s is a weakly lower semicontinuous, proper and convex
functional in H. Moreover, its subdifferential ∂Φp,s is single-valued.

Proof. The functional Φp,s is clearly convex and proper. The weak lower semi-
continuity follows from the weak lower semicontinuity of the Lp(∂Ω)-norm and
by proceeding as in [34, Proposition 2.3]. Moreover, from Proposition 2.40 in
[4], ∂Φp,s is single-valued. �

3.2. Abstract Cauchy problem

Let T be a fixed positive number. We consider the abstract Cauchy problem

(P )
{

∂u
∂t + Au= F̃ , t ∈ [0, T ]
u(0) = u0,

where A is the subdifferential of Φp,s and F̃ = (f, g) and u0 are given data.
According to [3, Section 2.1, chapter II], we give the following definition.

Definition 3.2. A function u : [0, T ] → H is a strong solution of problem (P )
if u ∈ C([0, T ];H), u(t) is differentiable a.e. in (0, T ), u(t) ∈ D(−A) a.e and
∂u
∂t + Au= F̃ for a.e. t ∈ [0, T ].

From [3, Theorem 2.1, chapter IV] the following existence and uniqueness
result for the strong solution of problem (P ) holds.

Theorem 3.3. If u0 ∈ D(−A) and (f, g) ∈ L2([0, T ];H), then problem (P ) has
a unique strong solution u ∈ C([0, T ];H) such that u ∈ W 1,2((δ, T );H) for
every δ ∈ (0, T ). Moreover u ∈ D(−A) a.e. for t ∈ (0, T ),

√
t∂u

∂t ∈ L2(0, T ;H)
and Φp,s[u] ∈ L1(0, T ).

From Theorem 1 and Remark 2 in [7] (see also [3]) we have the following
result.

Theorem 3.4. Let ϕ : H → (−∞,+∞] be a proper, convex, lower semicontin-
uous functional on a real Hilbert space H, with effective domain D(ϕ). Then
the subdifferential ∂ϕ is a maximal monotone m-accretive operator. Moreover,
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D(ϕ) = D(∂ϕ) and −∂ϕ generates a nonlinear C0-semigroup {T (t)}t≥0 on
D(ϕ) in the following sense: for each u0 ∈ D(ϕ), the function u := T (·)u0 is
the unique strong solution of the problem

⎧
⎪⎨

⎪⎩

u ∈ C(R+;H) ∩ W 1,∞
loc ((0,∞);H) and u(t) ∈ D(ϕ) a.e.,

∂u

∂t
+ ∂ϕ(u) � 0 a.e. on R+,

u(0, x) = u0(x).

In addition, −∂ϕ generates a nonlinear semigroup {T̃ (t)}t≥0 on H where, for
every t ≥ 0, T̃ (t) is the composition of the semigroup T (t) on D(ϕ) with the
projection on the convex set D(ϕ).

From Proposition 3.1 and Theorem 3.4 it follows that ∂Φp,s is a maximal,
monotone and m-accretive operator on H = X

2(Ω, ∂Ω), with domain dense in
H.

We denote by Tp,s(t) the nonlinear semigroup generated by −∂Φp,s. From
Proposition 3.2, page 176 in [45], the following result follows.

Proposition 3.5. Tp,s(t) is a strongly continuous and contractive semigroup on
H.

3.3. The strong problem

We give a characterization of ∂Φp,s in order to prove that the strong solution
of the abstract Cauchy problem solves problem (P̃ ).

Theorem 3.6. Let u ∈ W s,p(Ω) for a.e. t ∈ (0, T ], and let f = (f, f |∂Ω) ∈ H.
Then f ∈ ∂Φp,s[u] if and only if u = (u, u|∂Ω) solves the following problem:

(P̄ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−Δp)s
Ωu = f in Lp′

(Ω),

Cp,s

〈
N p′(1−s)

p u, v
〉

(Bp,p
α

(∂Ω))′,Bp,p
α

(∂Ω)
+
〈
b|u|p−2u, v

〉

Lp′ (∂Ω),Lp(∂Ω)

+p 〈Θp,γ(u), v〉(Bp,p
α

(∂Ω))′,Bp,p
α

(∂Ω) = 〈f, v〉L2(∂Ω),L2(∂Ω) ∀ v ∈ Bp,p
α (∂Ω).

Proof. Let f ∈ ∂Φp,s, i.e. Φp,s(ψ)−Φp,s[u] ≥ (f , ψ−u)H for every ψ ∈ W s,p(Ω).
This means that

∫

Ω

f(ψ − u) dLN +
∫

∂Ω

f(ψ − u) dμ

≤ CN,p,s

2p

∫∫

Ω×Ω

|ψ(x) − ψ(y)|p − |u(x) − u(y)|p
|x − y|N+sp

dLN (x)dLN (y)

+
1
p

∫

∂Ω

b(|ψ|p − |u|p) dμ + 〈Θp,γ(ψ), ψ〉 − 〈Θp,γ(u), u〉.

(3.3)
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We choose ψ = u + tv, with v ∈ W s,p(Ω) and 0 < t ≤ 1 in (3.3), thus
obtaining

t

∫

Ω
f v dLN + t

∫

∂Ω
f v dµ

≤ CN,p,s

2p

∫∫

Ω×Ω

|(u + tv)(x) − (u + tv)(y)|p − |u(x) − u(y)|p
|x − y|N+sp

dLN (x)dLN (y)

+
1

p

∫

∂Ω
b(|u + tv|p − |u|p) dµ + 〈Θp,γ(u + tv), u + tv〉 − 〈Θp,γ(u), u〉.

(3.4)
We first take v ∈ D(Ω) in (3.4) and, by passing to the limit for t → 0+,

we get
∫

Ω
f v dLN ≤ CN,p,s

2

∫∫

Ω×Ω
|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y).

If we take −v in (3.4) we obtain the opposite inequality, thus getting the
equality
∫

Ω
f v dLN =

CN,p,s

2

∫∫

Ω×Ω
|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y).

Since v ∈ D(Ω) and p′ ≤ 2, it turns out that in particular f ∈ Lp′
(Ω).

Hence, the p-fractional Green formula for irregular domains given by Theo-
rem 2.2 yields that

(−Δp)s
Ωu = f in Lp′

(Ω) (3.5)

(and in particular in L2(Ω)).
We go back to (3.4). Dividing by t > 0 and passing to the limit for

t → 0+, we get
∫

Ω

f v dLN +
∫

∂Ω

f v dμ

≤ CN,p,s

2

∫∫

Ω×Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dLN (x)dLN (y)

+
∫

∂Ω

b|u|p−2u v dμ + p〈Θp,γ(u), v〉.

As before, by taking −v we obtain the opposite inequality, hence we get
the equality. Then, from Theorem 2.2 and (3.5) we get

∫

∂Ω

fv dμ = Cp,s

〈
N p′(1−s)

p u, v
〉

(Bp,p
α (∂Ω))′,Bp,p

α (∂Ω)
+
∫

∂Ω

b|u|p−2u v dμ

+p〈Θp,γ(u), v〉(Bp,p
α (∂Ω))′,Bp,p

α (∂Ω). (3.6)

Hence (3.6) holds in (Bp,p
α (∂Ω))′ and we get the thesis.

We now prove the converse. Let then u ∈ W s,p(Ω) be the weak solution
of problem (P̄ ). We have to prove that Φp,s[v]−Φp,s[u] ≥ (f ,v−u)H for every
v ∈ W s,p(Ω). By applying the inequality

1
p
(|a|p − |b|p) ≥ |b|p−2b(a − b)
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and taking into account that u is the weak solution of (P̄ ), by using as test
functions v and u respectively, we get

Φp,s[v] − Φp,s[u] ≥
∫

Ω

f v dLN

+
∫

∂Ω

f |∂Ω v|∂Ω dμ −
∫

∂Ω

f u dLN −
∫

∂Ω

f |∂Ω u|∂Ω dμ = (f ,v)H − (f ,u)H ,

thus concluding the proof. �

From Theorem 3.6, we deduce that the unique strong solution u of the
abstract Cauchy problem (P ) solves the following Venttsel’-type problem ˜(P )
on Ω for a.e. t ∈ (0, T ] in the following weak sense:

(P̃ )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

(t, x) + (−Δp)s
Ωu(t, x) = f(t, x) for a.e. x ∈ Ω,

〈
∂u|∂Ω

∂t
, v|∂Ω

〉

L2(∂Ω),L2(∂Ω)
+ Cp,s

〈
N p′(1−s)

p u, v|∂Ω

〉

(Bp,p
α

(∂Ω))′,Bp,p
α

(∂Ω)

+
〈
b|u|∂Ω|p−2u|∂Ω, v|∂Ω

〉

Lp′ (∂Ω),Lp(∂Ω) + p 〈Θp,γ(u|∂Ω), v|∂Ω〉(Bp,p
α

(∂Ω))′,Bp,p
α

(∂Ω)

= 〈f|∂Ω, v|∂Ω〉L2(∂Ω),L2(∂Ω) ∀ v ∈ Bp,p
α (∂Ω),

u(0, x) = u0(x) in H,

where we recall that α = s − N−d
p .

3.4. Well-posedness of the (homogeneous) heat equation

In this subsection we prove that the homogeneous heat equation is well-posed.
This will be achieved by investigating the order-preserving and Markovian
properties for the semigroup Tp,s(t) generated by −A = −∂Φp,s for every
p ≥ 2.

For the sake of completeness, we recall the following definitions. We refer
to [11] for details.

Definition 3.7. Let X be a locally compact metric space and μ̃ be a Radon
measure on X. Let {T (t)}t≥0 be a strongly continuous semigroup on L2(X, μ̃).
The semigroup is order-preserving if, for every u, v ∈ L2(X, μ̃) such that u ≤ v,

T (t)u ≤ T (t)v ∀ t ≥ 0.

The semigroup is non-expansive on Lq(X, μ̃) if for every t ≥ 0

‖T (t)u − T (t)v‖Lq(X,μ̃) ≤ ‖u − v‖Lq(X,μ̃) ∀u ∈ L2(X, μ̃) ∩ Lq(X, μ̃).

The semigroup is Markovian if it is order-preserving and non-expansive on
L∞(X, μ̃).

We give two equivalent conditions for proving order-preserving and Mar-
kovian properties.

Proposition 3.8. Let ϕ : H → (−∞,+∞] be a proper, convex, lower semicon-
tinuous functional on a real Hilbert lattice H, with effective domain D(ϕ). Let
{T (t)}t≥0 be the nonlinear semigroup on
H generated by −∂ϕ. Then the following assertions are equivalent:
(i) The semigroup {T (t)}t≥0 is order-preserving;
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(ii) For every u, v ∈ H one has

ϕ

(
1
2

(u + u ∧ v)
)

+ ϕ

(
1
2

(v + u ∨ v)
)

≤ ϕ(u) + ϕ(v),

where u ∧ v := inf{u, v} and u ∨ v := sup{u, v}.

Proposition 3.9. Let ϕ : L2(X, ν) → (−∞,+∞] be a proper, convex, lower
semicontinuous functional. Let {T (t)}t≥0 be the nonlinear semigroup on L2(X, ν)
generated by −∂ϕ. Assume that {T (t)}t≥0 is order-preserving. Then, the fol-
lowing assertions are equivalent:
(i) The semigroup {T (t)}t≥0 is Markovian;
(ii) For every u, v ∈ L2(X, ν) and α̃ > 0

ϕ (v + gα̃(u, v)) + ϕ (u − gα̃(u, v)) ≤ ϕ(u) + ϕ(v),

where

gα̃(u, v) :=
1
2
[
(u − v + α̃)+ − (u − v − α̃)−] ,

with u+ := sup{u, 0} and u− := sup{−u, 0}.

For the proofs of Propositions 3.8 and 3.9 we refer to [18, p. 1] and [11,
Theorem 3.6] respectively.

Theorem 3.10. The semigroup {Tp,s(t)}t≥0 generated by −A is Markovian on
X

2(Ω, ∂Ω).

Proof. We will apply Propositions 3.8 and 3.9.
Let u,v ∈ X

2(Ω, ∂Ω). If u does not belong to W s,p(Ω), then Φp,s[u] =
+∞ and the conclusion is obvious (and similarly if v /∈ W s,p(Ω)). Hence, we
suppose that u,v ∈ W s,p(Ω).

We begin by proving the order-preserving property. We set, for u, v ∈
W s,p(Ω),

g(u, v) :=
1
2

(u + u ∧ v) and h(u, v) :=
1
2

(v + u ∨ v) .

Since W s,p(Ω) is a lattice, we have that both g(u, v) and h(u, v) belong
to W s,p(Ω). Proceeding as in [47, Theorem 3.1.4], we prove that

∫

∂Ω

b|g(u, v)|p dμ +
∫

∂Ω

b|h(u, v)|p dμ ≤
∫

∂Ω

b|u|p dμ +
∫

∂Ω

b|v|p dμ. (3.7)

Moreover, from the convexity of the functional and proceeding as in [48, The-
orem 3.4] we have that

|g(u, v)|pW s,p(Ω) + 〈Θp,γ(g(u, v)), g(u, v)〉
+ |h(u, v)|pW s,p(Ω) + 〈Θp,γ(h(u, v)), h(u, v)〉 ≤ |u|pW s,p(Ω)

+ 〈Θp,γ(u), u〉 + |v|pW s,p(Ω) + 〈Θp,γ(v), v〉.
(3.8)

Combining (3.7) and (3.8), we obtain

Φp,s[g(u, v)] + Φp,s[h(u, v)] ≤ Φp,s[u] + Φp,s[v],

thus {Tps
(t)}t≥0 is order-preserving.
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In order to complete the proof, we apply Proposition 3.9. In the notation
of Proposition 3.9, given u, v ∈ W s,p(Ω) and α̃ > 0, we set

gα̃(u, v) :=
1
2
[
(u − v + α̃)+ − (u − v − α̃)−] .

We point out that gα̃(u, v) ∈ W s,p(Ω). Proceeding again as in the proofs of
[47, Theorem 3.1.4] and [48, Theorem 3.4], we get that

Φp,s[v + gα̃(u, v)] + Φp,s[u − gα̃(u, v)] ≤ Φp,s[u] + Φp,s[v],

hence from Proposition 3.9 {Tp,s(t)}t≥0 is non-expansive on X
∞(Ω, ∂Ω), and

thus {Tp,s(t)}t≥0 is Markovian. �

Remark 3.11. We remark that, from [9, Theorem 1] and [40, Corollary 3],
{Tp,s(t)}t≥0 can be extended to a non-expansive semigroup on X

q(Ω, ∂Ω)
for every q ∈ [2,∞]. Moreover, we can prove also the strong continuity of
{Tp,s(t)}t≥0 over X

q(Ω, ∂Ω) for every q ∈ [2,∞) by following the approach
used in [47, Theorem 3.1.4].

4. Ultracontractivity of semigroups

We now focus on proving the ultracontractivity of the semigroup Tp,s(t).
We first prove a logarithmic Sobolev inequality adapted to our case.

Proposition 4.1. Let p ≥ 2, s > N−d
p and sp < N . Let u ∈ W s,p(Ω) be non-

negative on Ω and such that ‖u‖p
p = ‖u‖p

Lp(Ω) + ‖u|∂Ω‖p
Lp(∂Ω) = 1. We set

Λ(u) :=
∫

Ω

u dLN +
∫

∂Ω

u|∂Ω dμ. (4.1)

Then there exists a positive constant C̄ = C̄(N, s, p, d,Ω) such that, for every
ε > 0,

Λ(up logu) ≤
d

p(d−N+sp)

[
εC̄

∫∫

Ω×Ω
|u(x)−u(y)|p

|x−y|N+sp dLN (x)dLN (y)−log ε+εC̄ (|ūΩ|p+|ū∂Ω|p)
]
,

(4.2)

where up logu := (up log u, u|p∂Ω log u|∂Ω) and ūΩ and ū∂Ω are defined in (1.8).

Proof. Following [6, Proposition 2.1], we apply Jensen’s inequality with q =
p̄ − p = p(d−N+sp)

N−sp and we obtain

Λ(up logu) ≤ 1

q
log Λ(up+q) =

N − sp

p(d − N + sp)
log ‖u‖p̄

p̄ =
d

p(d − N + sp)
log ‖u‖p

p̄.

(4.3)

Moreover, from the properties of the logarithmic function, for every ε > 0
we have that

log ‖u‖p
p̄ ≤ ε‖u‖p

p̄ − log ε. (4.4)
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From (1.11) with q = p̄, we estimate ‖u‖p
p̄ in (4.4). Hence, there exists a

positive constant C̄ such that

Λ(up logu) ≤ d

p(d − N + sp)

[
εC̄

(
|u|pW s,p(Ω) + |ūΩ|p + |ū∂Ω|p

)
− log ε

]
,

thus concluding the proof. �

In order to prove the ultracontractivity of Tp,s(t), we now prove some
preliminary lemmas. We adapt to the fractional framework the results of [34,
Section 3.2], see also [49,51,52].

We first recall some known numerical inequalities. For more details we
refer to [5].

Proposition 4.2. Let a, b ∈ R
N . If r ∈ (1,∞), it holds that

(
|a|r−2a − |b|r−2b

)
(a − b) ≥ (r − 1) (|a| + |b|)r−2 |a − b|2. (4.5)

If r ∈ [2,∞), then for c∗
r := min{1/(r − 1), 2−2−r 3−r/2} ∈ (0, 1], it holds that

(
|a|r−2a − |b|r−2b

)
(a − b) ≥ c∗

r |a − b|r. (4.6)

We remark that (4.6) implies
(
|a|r−2a − |b|r−2b

)
sgn(a − b) ≥ c∗

r |a − b|r−1. (4.7)

Lemma 4.3. Let {Tp,s(t)}t≥0 be the Markovian semigroup on X
2(Ω, ∂Ω) gener-

ated by −∂Φp,s. Given t ≥ 0 and u0, v0 ∈ X
∞(Ω, ∂Ω), let u(t, x):=Tp,s(t)u0(x)

and v(t, x) := Tp,s(t)v0(x) be the solutions of the homogeneous problem as-
sociated to (P ) with initial data u0 and v0 respectively. We set U(t, x) :=
u(t, x)− v(t, x) and U = (U,U |∂Ω). Then, for every real number r ≥ 2 and for
a.e. t ≥ 0, there exists a constant C̃ = C̃(N, s, p) such that

d
dt‖U(t)‖r

r ≤ −rC̃
∫∫

Ω×Ω
|U(t,x)−U(t,y)|r+p−2

|x−y|N+sp dLN (x)dLN (y)

−c∗
pb0r

∫

∂Ω
|U |∂Ω(t)|r+p−2 dμ,

(4.8)

where c∗
p > 0 is the constant given in Proposition 4.2 and b0 = minΩ b.

Proof. The proof can be obtained by suitably adapting the proof of Lemma
3.4 in [34]. �

We remark that, as a consequence of Lemma 4.3, we have that Gr(t) :=
‖U(t)‖r

r = ‖U(t)‖r
Lr(Ω) + ‖U |∂Ω(t)‖r

Lr(∂Ω) is non-increasing w.r.t. t.
We now recall a useful estimate for the nonlocal term on Ω appearing in

Φp,s[u]. We refer to [52, Lemma 4.1].

Lemma 4.4. Let p, r ≥ 2 and s ∈ (0, 1). Then, for every u, v ∈ W s,p(Ω) it
holds that

Cr,p

(
|u|

r+p−2
p , |u|

r+p−2
p

)

s,p
≤ Cr,p(|u|

r−2
p , |u|

r−2
p )s,p

≤ (u, |u|r−2u)s,p, (4.9)
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where Cr,p := (r − 1)
(

p

r + p − 2

)p

.

The next two lemmas follow by adapting to the fractional setting Lemmas
3.5 and 3.6 in [34] (see also [47]).

Lemma 4.5. Under the same notations and assumptions of Lemma 4.3, if r :
[0,∞) → [2,∞) is an increasing differentiable function, then for a.e. t ≥ 0
and for every ε > 0 we have that

d
dt

log ‖U(t)‖r(t) ≤ r′(t)
r(t)

Λ

⎛

⎝
|U(t)|r(t)

‖U(t)‖r(t)
r(t)

log
|U(t)|

‖U(t)‖r(t)

⎞

⎠

− C̃(r(t) − 1)
εC̄

(
p

r(t) + p − 2

)p

log ε
‖U(t)‖r(t)+p−2

r(t)+p−2

‖U(t)‖r(t)
r(t)

+ CΩC̃(r(t) − 1)
(

p

r(t) + p − 2

)p ‖U(t)‖r(t)+p−2
r(t)+p−2

p

‖U(t)‖r(t)
r(t)

− C̃(r(t) − 1)
εC̄

(
p

r(t) + p − 2

)p−1
p(d − N + sp)

d

‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

·

· Λ

⎛

⎝
|U(t)|r(t)+p−2

‖U(t)‖r(t)+p−2
r(t)+p−2

log
|U(t)|

‖U(t)‖r(t)+p−2

⎞

⎠ ,

(4.10)

where C̄ and C̃ are the constants appearing in (4.2) and (4.8) respectively, Λ
is defined as in (4.1) and CΩ := max

{
1

|Ω|p , 1
μ(∂Ω)p

}
.

Proof. From the chain rule, we have that

d
dt

‖U(t)‖r(t)
r(t) = r′(t)

∂

∂r
‖U(t)‖r(t)

r(t) +
∂

∂t
‖U(t)‖r(t)

r(t)

= r′(t)Λ
(
|U(t)|r(t) log |U(t)|

)
+

∂

∂t
‖U(t)‖r(t)

r(t).

Then, from Lemma 4.3 the following holds:
d

dt
log ‖U(t)‖r(t) = −

r′(t)
r(t)

log ‖U(t)‖r(t)

+
1

r(t)‖U(t)‖r(t)
r(t)

d

dt
‖U(t)‖r(t)

r(t) ≤ −
r′(t)
r(t)

log ‖U(t)‖r(t)

+
r′(t)
r(t)

1

‖U(t)‖r(t)
r(t)

Λ
(
|U(t)|r(t)

log |U(t)|
)

−
c∗

pb0

‖U(t)‖r(t)
r(t)

∫

∂Ω
|U|∂Ω(t)|r+p−2

dμ −
C̃

‖U(t)‖r(t)
r(t)

·

·
∫∫

Ω×Ω

|U(t, x)−U(t, y)|p−2(U(t, x)−U(t, y))(|U(t, x)|r(t)U(t, x)−|U(t, y)|r(t)U(t, y))

|x−y|N+sp
dLN (x)dLN (y).

(4.11)
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Recalling the definition of Λ, using Lemma 4.4 and estimating the bound-
ary term with zero, we get

d
dt

log ‖U(t)‖r(t) ≤ r′(t)
r(t)

Λ

⎛

⎝
|U(t)|r(t)

‖U(t)‖r(t)
r(t)

log
|U(t)|

‖U(t)‖r(t)

⎞

⎠

− C̃

‖U(t)‖r(t)
r(t)

(r(t) − 1)
(

p

r(t) + p − 2

)p

·

·
∫∫

Ω×Ω

∣
∣
∣|U(t, x)|

r(t)+p−2
p − |U(t, y)|

r(t)+p−2
p

∣
∣
∣
p

|x − y|N+sp
dLN (x)dLN (y)

=
r′(t)
r(t)

Λ

⎛

⎝
|U(t)|r(t)

‖U(t)‖r(t)
r(t)

log
|U(t)|

‖U(t)‖r(t)

⎞

⎠

− C̃(r(t) − 1)
(

p

r(t) + p − 2

)p ‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

|F (t)|pW s,p(Ω),

(4.12)

where

F (t, x) :=
|U(t)|

r(t)+p−2
p

‖U(t)‖
r(t)+p−2

p

r(t)+p−2

fulfills the hypotheses of Proposition 4.1. Thus we have that, for every ε > 0,

d

dt
log ‖U(t)‖r(t) ≤ r′(t)

r(t)
Λ

(
|U(t)|r(t)

‖U(t)‖r(t)
r(t)

log
|U(t)|

‖U(t)‖r(t)

)

+ C̃(r(t) − 1)

(
p

r(t) + p − 2

)p ‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

(

−p(d − N + sp)

dεC̄
Λ(Fp logF)

− log ε

εC̄
+ |F̄Ω|p + |F̄∂Ω|p

)

.

(4.13)
We now point out that

Λ(Fp logF) =
r(t) + p − 2

p
Λ

⎛

⎝
|U(t)|r(t)+p−2

‖U(t)‖r(t)+p−2
r(t)+p−2

log
|U(t)|

‖U(t)‖r(t)+p−2

⎞

⎠ . (4.14)

Moreover, we have that

|F̄Ω|p =
1

|Ω|p‖U(t)‖r(t)+p−2
r(t)+p−2

∣
∣
∣
∣

∫

Ω

|U(t)|
r(t)+p−2

p dLN

∣
∣
∣
∣

p

=
‖U(t)‖r(t)+p−2

L
r(t)+p−2

p (Ω)

|Ω|p‖U(t)‖r(t)+p−2
r(t)+p−2

;

(4.15)



NoDEA Fractional (s, p)-Robin–Venttsel’. . . Page 19 of 33    31 

an analogous equality holds for |F̄∂Ω|p. Hence, from (4.13), (4.14) and (4.15)
we deduce

d
dt

log ‖U(t)‖r(t) ≤ r′(t)
r(t)

Λ

⎛

⎝
|U(t)|r(t)

‖U(t)‖r(t)
r(t)

log
|U(t)|

‖U(t)‖r(t)

⎞

⎠

− C̃(r(t) − 1)
(

p

r(t) + p − 2

)p log ε

εC̄

‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

− C̃(r(t) − 1)p(d − N + sp)
dεC̄

(
p

r(t) + p − 2

)p−1 ‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

·

· Λ

⎛

⎝
|U(t)|r(t)+p−2

‖U(t)‖r(t)+p−2
r(t)+p−2

log
|U(t)|

‖U(t)‖r(t)+p−2

⎞

⎠

+ C̃(r(t) − 1)
(

p

r(t) + p − 2

)p 1

‖U(t)‖r(t)
r(t)

·

·

⎛

⎜
⎝

‖U(t)‖r(t)+p−2

L
r(t)+p−2

p (Ω)

|Ω|p +
‖U(t)‖r(t)+p−2

L
r(t)+p−2

p (∂Ω)

μ(∂Ω)p

⎞

⎟
⎠ ,

(4.16)

and, defining

CΩ := max
{

1
|Ω|p ,

1
μ(∂Ω)p

}

,

we get the thesis. �

Lemma 4.6. Under the assumptions of Lemma 4.5, for a.e. t ≥ 0 we have that

d
dt

log ‖U(t)‖r(t) ≤ −A(t) log ‖U(t)‖r(t) − B(t), (4.17)

where

A(t) :=
r′(t)(p − 2)d

r(t)(r(t) + p − 2)(d − N + sp)
, (4.18)

B(t) := − r′(t)(N − sp)(p − 2)
r(t)(r(t) + p − 2)(d − N + sp)

log ω − Ĉp‖U0‖p−2
2

+
r′(t)d

r(t)(r(t) + p − 2)(d − N + sp)
·

· log

[
r(t)
r′(t)

p(d − N + sp)
d

C̃(r(t) − 1)
C̄

(
p

r(t) + p − 2

)p−1
]

, (4.19)

Ĉ = Ĉ(N, s, p,Ω) is a positive constant, U0 := U(0) = u0 − v0 and ω =
max {|Ω|, μ(∂Ω)}.
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Proof. We choose ε > 0 as follows:

ε :=
r(t)
r′(t)

p(d − N + sp)
d

C̃

C̄
(r(t) − 1)

(
p

r(t) + p − 2

)p−1 ‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

.

Hence from (4.10) we get

d
dt

log ‖U(t)‖r(t) ≤ r′(t)
r(t)

Λ

⎛

⎝
|U(t)|r(t)

‖U(t)‖r(t)
r(t)

log
|U(t)|

‖U(t)‖r(t)

⎞

⎠

− r′(t)
r(t)

Λ

⎛

⎝
|U(t)|r(t)+p−2

‖U(t)‖r(t)+p−2
r(t)+p−2

log
|U(t)|

‖U(t)‖r(t)+p−2

⎞

⎠

− r′(t)
r(t)(r(t) + p − 2)

d

d − N + sp
·

· log

⎡

⎣
r(t)
r′(t)

p(d − N + sp)
d

C̃

C̄
(r(t) − 1)

(
p

r(t) + p − 2

)p−1 ‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

⎤

⎦

+ CΩC̃(r(t) − 1)
(

p

r(t) + p − 2

)p ‖U(t)‖r(t)+p−2
r(t)+p−2

p

‖U(t)‖r(t)
r(t)

.

(4.20)
We point out that, since r(t) ≥ 2 and p ≥ 2, it holds that

(r(t) − 1)
(

p

r(t) + p − 2

)p

≤ p.

From Hölder and interpolation inequalities, we get that

‖U(t)‖
L

r(t)+p−2
p (Ω)

≤ |Ω|
1

r(t)+p−2 ‖U(t)‖
p−2

r(t)+p−2

L1(Ω) ‖U(t)‖
r(t)

r(t)+p−2

Lr(t)(Ω)
; (4.21)

an analogous inequality holds for the L
r(t)+p−2

p (∂Ω)-norm of U(t).
We now set

K(q,U) := Λ

( |U|q
‖U‖q

q
log

|U|
‖U‖q

)

=

∫

Ω

|U |q
‖U‖q

q
log

|U |
‖U‖q

dLN +

∫

∂Ω

|U |∂Ω|q
‖U‖q

q
log

|U |∂Ω|
‖U‖q

dµ.

The functional K(q,U) satisfies the following property: for every q2 ≥ q1 ≥ 1
and for every U ∈ X

∞(Ω, ∂Ω)

K(q2,U) − K(q1,U) ≥ log
‖U‖q1

‖U‖q2

. (4.22)

Applying (4.21) and (4.22) with q1 = r(t) and q2 = (r(t) + p − 2) and
defining C∗ := CΩωC̃, from (4.20) we obtain
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d

dt
log ‖U(t)‖r(t) ≤ r′(t)

r(t)
log

‖U(t)‖r(t)+p−2

‖U(t)‖r(t)

+ pC∗‖U(t)‖p−2
1 − r′(t)

r(t)(r(t) + p − 2)

d

d − N + sp
·

· log

[
r(t)

r′(t)

p(d − N + sp)

d

C̃

C̄
(r(t) − 1)

(
p

r(t) + p − 2

)p−1 ‖U(t)‖r(t)+p−2
r(t)+p−2

‖U(t)‖r(t)
r(t)

]

.

(4.23)

Now, using the properties of the logarithmic function, we get

d

dt
log ‖U(t)‖r(t) ≤

r′(t)
r(t)

(

1 −
d

d − N + sp

)

log ‖U(t)‖r(t)+p−2 + pC
∗‖U(t)‖p−2

1

−
r′(t)
r(t)

(

1 −
r(t)d

(r(t) + p − 2)(d − N + sp)

)

log ‖U(t)‖r(t)

−
r′(t)

r(t)(r(t) + p − 2)

d

d − N + sp
log

[
r(t)

r′(t)
p(d − N + sp)

d

C̃

C̄
(r(t) − 1)

(
p

r(t) + p − 2

)p−1
]

.

(4.24)
We remark that, since sp < N , 1 − d

d−N+sp = sp−N
d−N+sp < 0. Hence, from

Hölder inequality we have that

d

dt
log ‖U(t)‖r(t) ≤

r′(t)
r(t)

d(2 − p)

(r(t) + p − 2)(d − N + sp)
log ‖U(t)‖r(t)

+
r′(t)
r(t)

N − sp

d − N + sp

p − 2

r(t) + p − 2
log ω + pC

∗‖U(t)‖p−2
1

−
r′(t)

r(t)(r(t) + p − 2)

d

d − N + sp
log

[
r(t)

r′(t)
p(d − N + sp)

d

C̃

C̄
(r(t) − 1)

(
p

r(t) + p − 2

)p−1
]

.

(4.25)
From Hölder inequality and the Markovian property of Tp,s(t), we deduce

‖U(t)‖L1(Ω) ≤ |Ω| 1
2 ‖U(t)‖L2(Ω) ≤ |Ω| 1

2 ‖U(0)‖L2(Ω) = |Ω| 1
2 ‖U0‖L2(Ω);

an analogous inequality holds on ∂Ω. Hence, for a suitable constant Ĉ depend-
ing on N , s, p and Ω, taking into account the definitions of A(t) and B(t) in
(4.18) and (4.19) respectively, estimate (4.17) follows. �

We now prove the ultracontractivity of Tp,s(t), the main result of this
section.

Theorem 4.7. Let p > 2 and sp < N . In the notations of the above lemmas, if
q ∈ [2,∞], then there exist two positive constants C1, C2 depending on N , s,
p, q, d and Ω such that

‖Tp,s(t)u0 −Tp,s(t)v0‖∞ ≤ C1(max{|Ω|, μ(∂Ω)})
λ1(s)

e
C2t‖u0−v0‖p−2

2 t
−λ2(s)‖u0 −v0‖λ3(s)

q ,

(4.26)
for every u0,v0 ∈ X

q(Ω, ∂Ω) and for every t > 0, where
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λ1(s) =
N − sp

d

[

1 −
(

q

q + p − 2

) d

d−N+sp

]

, λ2(s) =
1

p − 2

[

1 −
(

q

q + p − 2

) d

d−N+sp

]

,

λ3(s) =

(
q

q + p − 2

) d

d−N+sp

.

(4.27)

Proof. We first take u0,v0 ∈ X
∞(Ω, ∂Ω) and we use the same assumptions and

notations of Lemma 4.6. In particular, we consider an increasing differentiable
function r : [0,∞) → [2,∞) and we define A(t) and B(t) as in (4.18) and (4.19)
respectively.

We set

y(t) := log ‖U(t)‖r(t);

then, from (4.17), y(t) satisfies the following ordinary differential inequality:

y′(t) + A(t)y(t) + B(t) ≤ 0. (4.28)

We now consider the following ODE:
{

x′(t) + A(t)x(t) + B(t) = 0,

x(0) = y(0).
(4.29)

The unique solution x(t) of (4.29) can be written in the following way:

x(t) = exp
(

−
∫ t

0

A(τ) dτ

)[

y(0) −
∫ t

0

B(τ) exp
(∫ τ

0

A(σ) dσ

)

dτ

]

; (4.30)

hence, the solution y(t) of the ordinary differential inequality (4.28) is such
that y(t) ≤ x(t) for every t ∈ [0,∞).

We now fix t > 0, for any given q ≥ 2 and for τ ∈ [0, t) we set

r(τ) :=
qt

t − τ
. (4.31)

The function r(·) satisfies the hypotheses of Lemma 4.5, i.e. it is increasing
and differentiable on [0, t) and r(τ) ≥ 2 for every τ ∈ [0, t).

Using (4.31), we obtain that

A(τ) =
d(p − 2)

d − N + sp

1
t(q + p − 2) − τ(p − 2)

and

B(τ) = −
(N − sp)(p − 2)

d − N + sp

1

t(q + p − 2) − τ(p − 2)
log ω − Ĉp‖U0‖p−2

2 +
d

d − N + sp
·

·
1

t(q + p − 2) − τ(p − 2)
log

[
p(d − N + sp)

d

C̃

C̄
(t(q − 1) + τ)

(
p(t − τ)

t(q + p − 2) − τ(p − 2)

)p−1
]

,

where C̄, C̃ and Ĉ are the constants in Proposition 4.1, Lemma 4.3 and
Lemma 4.6 respectively.



NoDEA Fractional (s, p)-Robin–Venttsel’. . . Page 23 of 33    31 

Our aim is now to write x(t) in a more explicit way. From standard
calculations, we have that

∫ τ

0

A(σ) dσ =
d

d − N + sp
log

t(q + p − 2)
t(q + p − 2) − τ(p − 2)

,

hence

lim
τ→t−

exp
(

−
∫ τ

0

A(σ) dσ

)

=
(

q

q + p − 2

) d
d−N+sp

. (4.32)

Moreover, again from standard cumbersome calculations, we can prove that

lim
τ→t−

∫ τ

0

B(σ) exp
(∫ σ

0

A(ξ) dξ

)

dσ

= −N − sp

d
log ω

[(
q + p − 2

q

) d
d−N+sp

− 1

]

− Čt‖U0‖p−2
2

+
1

p − 2

[(
q + p − 2

q

) d
d−N+sp

− 1

]

[

log

(

pp d − N + sp

d

C̃

C̄

)

+ log t

]

+ I(1) + I(2) − I(3),

(4.33)

where Č is a suitable positive constant depending on N , s, p, Ω, d and q and
I(1), I(2) and I(3) are integral terms which do not depend on t and can be
explicitly computed as in [10, proof of Lemma 3.9].

From (4.32) and (4.33) it follows that

lim
τ→t−

x(τ) =
(

q

q + p − 2

) d
d−N+sp

y(0) +
N − sp

d
log ω

[

1 −
(

q

q + p − 2

) d
d−N+sp

]

+ C2t‖U0‖p−2
2

− 1
p − 2

[

1 −
(

q

q + p − 2

) d
d−N+sp

]

[

log

(

pp d − N + sp

d

C̃

C̄

)

+ log t

]

+ CI ,

(4.34)

where C2 =
(

q
q+p−2

) d
d−N+sp

Č and CI =
(

q
q+p−2

) d
d−N+sp

(I(3) − I(1) − I(2)).

We now point out that, as a consequence of Lemma 4.3, for every 0 ≤
τ < t it holds

‖U(t)‖r(τ) = ‖u(t) − v(t)‖r(τ) ≤ ‖u(τ) − v(τ)‖r(τ)

= ‖U(τ)‖r(τ) = ey(τ) ≤ ex(τ). (4.35)
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Since y(0) = log ‖U(0)‖r(0) = log ‖u0 − v0‖q, from (4.34) and (4.35) we
obtain

lim
τ→t−

‖U(t)‖r(τ) ≤ lim
τ→t−

ex(τ)

= ‖u0 − v0‖λ3(s)
q ωλ1(s) eC2t‖U0‖p−2

2 t−λ2(s)

(

pp d − N + sp

d

C̃

C̄

)−λ2(s)

eCI ,(4.36)

where the constants λ1(s), λ2(s) and λ3(s) are as defined in (4.27).
Finally, we remark that

lim
τ→t−

r(τ) = +∞;

hence, from the definition of ω, we have that, for a suitable constant C1 de-
pending on N , s, p, Ω, d and q,

‖U(t)‖∞ = ‖Tp,s(t)u0 − Tp,s(t)v0‖∞

≤ C1(max{|Ω|, μ(∂Ω)})λ1(s)eC2t‖u0−v0‖p−2
2 t−λ2(s)‖u0 − v0‖λ3(s)

q ,

thus the thesis follows in the case u0,v0 ∈ X
∞(Ω, ∂Ω). The proof in the case

u0,v0 ∈ X
q(Ω, ∂Ω) is then achieved by a density argument as in the proof of

[47, Theorem 3.2.7]. �

We remark that also in the linear case, i.e. p = 2, the semigroup T2,s(t)
is ultracontractive. The proof follows by adapting the techniques of [25, The-
orem 2.16].

5. The elliptic problem

In this section we investigate the elliptic Venttsel’ problem, under the same
assumptions and notations of the previous sections. In particular, we prove a
priori estimates for its (unique) weak solution.

Let (f, g) ∈ X
q,r(Ω, ∂Ω). The elliptic Venttsel’ problem is formally given

by

(Pe)

{
(−Δp)s

Ωu = f in Ω,

Cp,sN p′(1−s)
p u + b|u|∂Ω|p−2u|∂Ω + pΘp,γ(u|∂Ω) = g on ∂Ω.

We observe that, from Theorems 1.7 and 1.8, the space W s,p(Ω) is con-
tinuously embedded in X

q,r(Ω, ∂Ω) for every q ∈ [1, p∗] and r ∈ [1, p̄ ]; hence,
there exists a positive constant C such that, for every u ∈ W s,p(Ω),

‖u‖q,r ≤ C‖u‖W s,p(Ω). (5.1)

We first aim to prove the existence and uniqueness of a weak solution of
the elliptic problem (Pe).

We say that u ∈ W s,p(Ω) is a weak solution of problem (Pe) if
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CN,p,s

2

∫∫

Ω×Ω

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y)

+

∫

∂Ω
b|u|∂Ω|p−2u|∂Ω v|∂Ω dµ

+ p〈Θp,γ(u|∂Ω), v|∂Ω〉 =

∫

Ω
fv dLN +

∫

∂Ω
gv|∂Ω dµ for every v ∈ W s,p(Ω).

Theorem 5.1. If (f, g) ∈ X
q,r(Ω, ∂Ω) with q ∈ [1, p∗] and r ∈ [1, p̄ ], problem

(Pe) admits a unique weak solution u ∈ W s,p(Ω).

Proof. We introduce the following form, for u,v ∈ W s,p(Ω):

Ψp,s(u,v) :=
CN,p,s

2

∫∫

Ω×Ω

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dLN (x)dLN (y)

+

∫

∂Ω
b|u|∂Ω|p−2u|∂Ω v|∂Ω dµ + p〈Θp,γ(u|∂Ω), v|∂Ω〉.

(5.2)
Firstly, we prove that Ψp,s(u, ·) ∈ (W s,p(Ω))′ for every u ∈ W s,p(Ω). From
Hölder and trace inequalities, the hypotheses on b and ζ and the definition of
α in (1.3), for u ∈ W s,p(Ω) it holds that

|Ψp,s(u,v)| ≤ C‖u‖p−1
W s,p(Ω)‖v‖W s,p(Ω) + (max

Ω
b)‖u|∂Ω‖p−1

Lp(∂Ω)‖v|∂Ω‖Lp(∂Ω)

+ p‖ζ‖L∞(∂Ω×∂Ω)‖u|∂Ω‖p−1
Bp,p

α (∂Ω)
‖v|∂Ω‖Bp,p

α (∂Ω)

≤ C max{1,max
Ω

b, p‖ζ‖L∞(∂Ω×∂Ω)}‖u‖p−1
W s,p(Ω)‖v‖W s,p(Ω)

for a suitable constant C > 0 and for every v ∈ W s,p(Ω). Hence Ψp,s(u, ·) ∈
(W s,p(Ω))′ for every u ∈ W s,p(Ω).

Next, we claim that Ψp,s is hemicontinuous, strictly monotone, and co-
ercive. The hemicontinuity follows from the continuity of the norm function in
any Banach space, while the strict monotonicity follows from (4.5).

As to the coercivity, from Theorem 1.5 and the hypotheses on b and ζ
we deduce that

‖u‖p
W s,p(Ω) ≤ C

(
CN,p,s

2
|u|pW s,p(Ω) + ‖u‖p

Lp(∂Ω)

)

≤ C max
{

1,
1
b0

}

Ψp,s(u,u);

this implies that

Ψp,s(u,u)
‖u‖W s,p(Ω)

→ +∞ when ‖u‖W s,p(Ω) → +∞,

thus yielding the coercivity of Ψp,s.
The above claim implies that for every u ∈ W s,p(Ω) there exists an

operator S(u) ∈ (W s,p(Ω))′ such that

Ψp,s(u,v) = 〈S(u),v〉s,p for every v ∈ W s,p(Ω), (5.3)

where 〈·, ·〉s,p denotes the duality pairing between (W s,p(Ω))′ and W s,p(Ω).
Hence, from the properties of Ψp,s, equality (5.3) defines an hemicontinuous,
bounded, strictly monotone and coercive operator S : W s,p(Ω) → (W s,p(Ω))′.
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From [45, Corollary 2.2, page 39], S is surjective; hence, from Browder theorem
(see e.g. [20, Theorem 5.3.22]), for every w ∈ (W s,p(Ω))′, there exists a unique
u ∈ W s,p(Ω) solution of

〈S(u),v〉s,p = 〈w,v〉s,p for every v ∈ W s,p(Ω).

Now, for q ∈ [1, p∗] and r ∈ [1, p̄ ], we take (f, g) ∈ X
q,r(Ω, ∂Ω) and we define

the operator L : W s,p(Ω) → R by

L(v) :=
∫

Ω

fv dLN +
∫

∂Ω

gv|∂Ω dμ.

From (5.1), it follows that L ∈ (W s,p(Ω))′. Therefore, for every v ∈ W s,p(Ω)
there exists a unique weak solution u ∈ W s,p(Ω) of 〈S(u), v〉s,p = L(v), hence
the thesis follows. �

We now recall a technical lemma, see [43].

Lemma 5.2. Let ϕ = ϕ(t) be a non-negative, non-increasing function on a half
line {t ≥ k0 ≥ 0}, such that there exist c, λ > 0 and δ̃ > 1 with

ϕ(h) ≤ c(h − k)−λϕ(k)δ̃,

for h > k ≥ k0. Then

ϕ(k0 + η) = 0,

with

ηλ = cϕ(k0)δ̃−12λδ̃/(δ̃−1).

The following result follows from [22, Lemma 5.2 a)].

Lemma 5.3. Let u ∈ W s,p(Ω) and k ≥ 0 be a real number. We set uk :=
(|u| − k)+sgn(u). Then for every k ≥ 0 we have that uk ∈ W s,p(Ω) and

Ψp,s(uk, uk) ≤ Ψp,s(u, uk). (5.4)

We now prove the main result of this section, in which we prove a priori
estimates for the weak solution of problem (Pe).

Theorem 5.4. Let q ∈ [1, p∗] and r ∈ [1, p̄ ].

(a) If f ∈ (W s,p(Ω))′ and g ∈ (Bp,p
α (∂Ω))′, problem (Pe) admits a unique

weak solution u ∈ W s,p(Ω). Moreover, there exists a positive constant C
such that

‖u‖p−1
W s,p(Ω) ≤ C

(
‖f‖(W s,p(Ω))′ + ‖g‖(Bp,p

α (∂Ω))′
)
. (5.5)

(b) If (f, g) ∈ X
q,r(Ω, ∂Ω), then the unique weak solution u of problem (Pe)

belongs in particular to X
∞(Ω, ∂Ω). Moreover, there exists a positive con-

stant C such that
‖u‖p−1

∞ ≤ C‖(f, g)‖q,r. (5.6)
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(c) If (f, g) ∈ X
q,r(Ω, ∂Ω) and u,v ∈ W s,p(Ω) satisfy

Ψp,s(u, ψ) − Ψp,s(v, ψ) =
∫

Ω

fψ dLN +
∫

∂Ω

gψ|∂Ω dμ (5.7)

for every ψ ∈ W s,p(Ω), then there exists a positive constant C̃ = C̃(N,
s, p, q, r, d,Ω) such that

‖u − v‖p−1
∞ ≤ C̃‖(f, g)‖q,r. (5.8)

Proof. We begin by proving a). The existence and uniqueness with “irregular”
data (f, g) can be achieved as in Theorem 5.1. As to (5.5), we take v = u as
test function in the weak formulation of problem (Pe); then, from Theorem 1.5,
Hölder inequality and the trace theorem we get

‖u‖p
W s,p(Ω) ≤ C

(
CN,p,s

2

∫∫

Ω×Ω

|u(x) − u(y)|p
|x − y|N+sp

dLN (x)dLN (y)

+
∫

∂Ω

|u|∂Ω|p dμ

)

≤ CΨp,s(u,u)

= C
(
〈f, u〉(W s,p(Ω))′,W s,p(Ω) + 〈g, u|∂Ω〉(Bp,p

α (∂Ω))′,Bp,p
α (∂Ω)

)

≤ C
(
‖f‖(W s,p(Ω))′ + ‖g‖(Bp,p

α (∂Ω))′
)
‖u‖W s,p(Ω),

and this implies (5.5).
We now prove c); part b) can be proven in a similar way.
Let u,v ∈ W s,p(Ω) satisfy (5.7) and let k ≥ k0 ≥ 0 be real numbers. We

set

w := u − v, wk := (|w| − k)+sgn(w), wk := (wk, wk|∂Ω).

We remark that from Lemma 5.3 in particular it follows that wk ∈ W s,p(Ω),
hence its trace wk|∂Ω is well-defined. We also introduce the sets

Ak := {x ∈ Ω : |w(x)| > k}, Bk := Ω \ Ak = {x ∈ Ω : |w(x)| ≤ k},

where

|w(x)| =

{
|w(x)| if x ∈ Ω,

|w|∂Ω(x)| if x ∈ ∂Ω.

We now take ψ = wk in (5.7) and from (4.6) and (5.4) we obtain

Ψp,s(u,wk) − Ψp,s(v,wk) ≥ c∗
pΨp,s(w,wk) ≥ c∗

pΨp,s(wk,wk).

Now, from the coercivity of Ψp,s and (5.7) we have that there exists a positive
constant C̃1 such that

C̃1‖wk‖p
W s,p(Ω) ≤ Ψp,s(u,wk) − Ψp,s(v,wk) =

∫

Ω

fwk dLN +
∫

∂Ω

gwk|∂Ω dμ.

(5.9)
Let now q1, r1 ∈ [1,∞) be such that

1
q1

+
1
p∗ +

1
q

= 1 and
1
r1

+
1
p̄

+
1
r

= 1.
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We point out that from the bounds on q and r we have respectively that

q1 <
p∗

p − 1
and r1 <

p̄

p − 1
. (5.10)

From Hölder inequality, Theorems 1.7 and 1.8 we have that, for a suitable
positive constant C̃2,

∫

Ω

fwk dLN +
∫

∂Ω

gwk|∂Ω dμ ≤ ‖f‖Lq(Ω)‖wk‖Lp∗ (Ω)‖χAk
‖Lq1 (Ω)

+ ‖g‖Lr(∂Ω)‖wk|∂Ω‖Lp̄(∂Ω)‖χAk
‖Lr1 (∂Ω)

≤ C̃2‖(f, g)‖q,r‖wk‖W s,p(Ω)‖χAk
‖q1,r1 .

(5.11)
Inequalities (5.9) and (5.11) together with Theorems 1.7 and 1.8 yield

that, for a suitable constant C̃3 > 0,

‖wk‖p−1
p∗,p̄ ≤ C̃3‖(f, g)‖q,r‖χAk

‖q1,r1 . (5.12)

Let now h > k. Therefore, we point out that Ah ⊂ Ak and for every
x ∈ Ah it holds that |wk(x)| ≥ h − k. Hence

‖wk‖p−1
p∗,p̄ ≥ ‖(h − k)χAh

‖p−1
p∗,p̄,

and from (5.12) for every h > k ≥ 0 we have

‖χAh
‖p−1

p∗,p̄ ≤ C̃3(h − k)−(p−1)‖(f, g)‖q,r‖χAk
‖q1,r1 . (5.13)

We now set

δ0 := min
{

p∗

q1
,

p̄

r1

}

> p − 1 and δ̃ :=
δ0

p − 1
> 1.

By using the definition of Ak and of the ‖ · ‖q,r-norm, for every k ≥ 0 we have
that there exists a positive constant C̃4 such that

‖χAk
‖q1,r1 ≤ C̃4‖χAk

‖δ0
p∗,p̄.

Hence, there exists a positive constant C̃5 such that

‖χAh
‖p−1

p∗,p̄ ≤ C̃5(h − k)−(p−1)‖(f, g)‖q,r

(
‖χAk

‖p−1
p∗,p̄

)δ̃

. (5.14)

We now set

ϕ(h) := ‖χAh
‖p−1

p∗,p̄

for every h ∈ [0,∞). We apply Lemma 5.2 with k0 = 0 and λ = p − 1, thus
obtaining that

ϕ(η) = 0 with ηp−1 = C̃5‖(f, g)‖q,rϕ(0)δ̃−12(p−1)δ̃/(δ̃−1) (5.15)

Finally, we point out that (5.15) in particular implies that the set {x ∈ Ω :

|w(x)| > C̃‖(f, g)‖
1

p−1
q,r }, where C̃ can be computed explicitly, has zero mea-

sure. Hence, we have that

|w(x)| = |u(x) − v(x)| ≤ C̃‖(f, g)‖
1

p−1
q,r a.e. on Ω,

and this leads us to (5.8), thus concluding the proof. �
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Remark 5.5. We point out that most of the results of this paper can be adapted
to more general operators. In particular, one can replace the regional fractional
p-Laplacian and the nonlocal term on the boundary with more general opera-
tors satisfying suitable growth hypotheses. This will be object of a forthcoming
paper.
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