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Abstract

In this paper we study a quasi-linear evolution equation with nonlinear dynamical
boundary conditions in a three dimensional fractal cylindrical domain @), whose
lateral boundary is a fractal surface S. We consider suitable approximating
pre-fractal problems in the corresponding pre-fractal varying domains. After
proving existence and uniqueness results via standard semigroup approach, we
prove density results for the domains of energy functionals defined on ) and S.
Then we prove that the pre-fractal solutions converge in a suitable sense to the

limit fractal one via the Mosco convergence of the energy functionals.
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1 Introduction

Recently there has been a growing interest in the study of particular boundary value
problems, taking place in irregular (e.g. fractal) domains. This is due to the fact that
many industrial processes and natural phenomena occur across irregular media, and

fractal geometries are a useful tool in order to model these geometries (see [13], [11]).
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Evolution problems with dynamical boundary conditions on domains with fractal boun-
daries are known in literature as Venttsel’ problems (see [17] and [2]). This kind of
boundary conditions is of great interest in applications, since they arise in problems
such phase-transition phenomena, fluid diffusion, climatology and nonlinear cooling
effects on the boundary (see for example [15, 16, 19, 12] and the references listed in).
There is a huge literature on linear and nonlinear Venttsel’ problems, see [11], [28],
[27], [35, 30, 31, 34, 32, 33] (see also [10], [I1] and [12] for the numerical approxima-
tion). The goal of this paper is to adapt the framework of [20] in order to extend the
convergence results in [14] for a quasilinear Venttsel’ problem to the three dimensional
case. In the two dimensional case, one considers a fractal nonlinear energy functional
and its natural approximating pre-fractal energy functionals. By using the notion of
Mosco convergence (see [39, 10]) of energy functionals adapted by Télle to the nonli-
near framework in varying Hilbert spaces (see [15]), the authors are able to prove the
convergence of the pre-fractal solutions to the limit fractal one. The problem when
passing to the three dimensional case is twofold. First, since we consider the case of
the p-Laplace operator for p > 2, in two dimensions from Sobolev embedding theorem
we have the immersion of W? in the space of continuous functions; in dimension three,
this does not hold anymore. Secondly, in two dimensions a complete characterization
of the energy space on the fractal curve in terms of Lipschitz spaces holds; in parti-
cular, these spaces are subsets of the set of Holder continuous functions on the fractal
(see [18], [36] and [9]). In the three dimensional case, to our knowledge, this charac-
terization does not hold anymore. Therefore functions in the domain of the energy
functional have to be approximated in an appropriate way by smoother functions. We
then prove density results which will turn crucial in order to prove the M-convergence
of the energy functionals.

More precisely, we consider a cylindrical fractal surface S = F' x I, where I is the Koch
snowflake and I = [0, 1], and for every h € N its natural pre-fractal approximation
S = Fy x I. We denote by () the three-dimensional open bounded cylinder having
as lateral boundary S and, for every h € N, by @) the approximating pre-fractal
domains which are an increasing sequence exhausting (). We introduce the energy

) on the fractal and pre-fractal sets respectively, and we denote

functionals ®, and <I>§,h
by V(Q, S) the domain of the fractal energy form. These functionals are proper, convex
and weakly lower semicontinuous. We preliminary prove that we can approximate
functions in V(Q, S) with functions in V(Q,S) N C(Q) (see Theorem 6.4). The key
result is the M-convergence of the pre-fractal energy functionals Cbé,h) to the fractal
energy functional ®,. This is equivalent to the G-convergence of the subdifferrentials

of pre-fractal functionals (which we denote by A;) to the subdifferential of the fractal



Convergence and density results for parabolic quasi-linear Venttsel” BVPs 3

functional (denoted by A); moreover, also the nonlinear semigroups generated by —A,
converge to the nonlinear semigroup associated to —A.

We consider then the following two abstract Cauchy problems, for T" > 0 fixed:

dup

=L+ Apup 30, te [O,T]

(Po) g
uh(()) = Uy

() du i Aus0, te(0,T]
u(0) = uyp,

and we give existence and uniqueness results for such problems. We give a characte-
rization of A and Aj, in order to prove that the solutions of problems (F) and (P)
solve in a suitable sense a homogeneous parabolic equation for the p-Laplace operator
with nonlinear Venttsel’ boundary conditions (see problems (P,) and (P) below). We
point out that the existence and uniqueness of strong solutions for problems (f’h) and
(P) can be proved also for the nonhomogeneous problems (see Theorem 2.7 in [28] for
the fractal case in two dimensions), but in this case the asymptotic behavior of the
solutions is still an open problem. In the homogeneous case, we are able to prove that
the solutions of the pre-fractal problems converge to the limit fractal one.

The plan of the paper is the following. In Section 2 we introduce some notions on
fractal sets. In Section 3 we present some properties of Sobolev spaces and Besov
spaces. In Section 4 we give the definition of varying Hilbert spaces. In Section 5
we introduce the energy functionals in both the pre-fractal and the fractal case. In
Section 6 we prove some density results. In Section 7 we prove the M-convergence
of the functionals. In Section 8 we introduce the nonlinear Venttsel’ boundary value
problems in the pre-fractal and fractal case, we give existence and uniqueness results

and we prove the convergence of the pre-fractal solutions to the fractal solution.

2 The fractal and pre-fractal sets

In this paper we denote by |P — Fpy| the Euclidean distance in R™ and by B(Fy,r) =
{PeR": |P—- PR <r}, PheR" r >0, the euclidean ball.

By the Koch snowflake F', we denote the union of three com-planar Koch curves Ky, Ky
and K3 (see [17]). We assume that the junction points A;, A3 and As are the vertices
of a regular triangle with unit side length, i.e. |A; — As| = |A;1 — As| = |A3 — A5| = 1.
K, is the uniquely determined self-similar set with respect to a family ¥! of four

suitable contractions @Z)%l), o Z(Ll), with respect to the same ratio % (see [18]). Let

3
Vo o= { A, As}, Wiy iy =i 0oy, VY =D (V1Y) and
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Vh(l) = G ‘/;(11.‘).2';/
iq.ip=1

We set i|h = (iy,da,- .., in), Vi = UpsoV Y. Tt holds that K, = V. Now let K,
denote the unit segment whose endpoints are A; and A;. We set K, ;. = i, 4, (Ko)
and V(Kil...ih,) = Vi iy
In a similar way, it is possible to approximate K, K3 by the sequences (Vh(z))hzo,
(Vh(?’)) n>0, and denote their limits by v v,
In order to approximate F', we define the increasing sequence of finite sets of points
Vo= U;?’ZIVh(i), h>1andV, = thlvh. It holds that V, = Ulev*(i) and F =V,.
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Figure 1: The pre-fractal curve Fj, for h = 3.

The Hausdorft dimension of the Koch snowflake is given by D, = %.

One can define, in a natural way, a finite Borel measure p supported on F' by

pp = p1 + po + i3, (2.1)

where yi; denotes the normalized D ;-dimensional Hausdorff measure, restricted to K,
1=1,2,3.
In the following we denote by

3
Fyo = K" (2.2)
=1

the closed polygonal curve approximating F' at the (h + 1)-th step.

We define Sj, = F}, x I, where I = [0,1]. By €, C R? we denote the open bounded set
having as boundary Fj,. We denote by (), the three-dimensional cylindrical domain
having S, as “lateral surface” and the sets 2, x {0} and Q, x {1} as bases.

In an analogous way, we define the cylindrical-type surface S = F' x I and we denote
by € the open bounded two-dimensional domain with boundary F. As above, by @
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Figure 2: The fractal domain Q.

we denote the open cylindrical domain having S as lateral surface and the sets Q2 x {0}
and Q x {1} as bases (see Figure 2).

We denote the points of S and S by the couple P = (z,y), where © = (z1,15) are
the coordinates of the orthogonal projection of P on the plain containing F' and Fj,
respectively (for S and S;,) and y is the coordinate of the orthogonal projection of P
on the interval [0, 1], that is (xq,x2) € F (or (z1,22) € F}, for the pre-fractal case) and
yel.

We introduce on S the measure

dg = d,uF X dLl, (23)

where d£; is the one-dimensional Lebesgue measure on I.
By R we denote the open equilateral triangle whose midpoints are the vertices A;, Az,
As, and by T the open prism R x [0, 1] with bases R x {0} and R x {1}.

3 Functional spaces

By L*(-) we denote the Lebesgue space with respect to the Lebesgue measure dL3 on
subsets of R3, which will be left to the context whenever that does not create ambiguity.
Let T be a closed set of R3, by C(T') we denote the space of continuous functions on T’
and C%%(T) is the space of Holder continuous functions on T', 0 < 3 < 1. Let G be an
open set of R, by W*?(G), where s € R*, we denote the (possibly fractional) Sobolev
spaces (see [11]). D(G) is the space of infinitely differentiable functions with compact
support on G.

By ¢ we denote the arc-length coordinate on each edge F}, and we introduce the coor-

dinates x; = z1(¢), x9 = 22(¢), y = y on every affine face S}(Lj) of Sy. By d¢ we denote
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the one-dimensional measure given by the arc-length ¢ and by
do =df x dL,

we denote the measure on S}(Lj )
In the following, we will make use of trace spaces on polygonal and polyhedral boun-
daries. By W'P(F},) we denote (see [7]) the set

{ueC(F):ul, € WP (A,

In the sequel, we consider W?(F},) with the norm

1
el = (Nl + 1Dl )"

By W"™P(F},),0 < r <1 we denote the Sobolev space on Fj,, defined by local Lipschitz
charts as in [41].
We denote by W?(S},) the Sobolev space (on the polyhedral domain S;,) of functions

for which the norm

[lfsncsyy = [ (Nl + DUl + Dyullogr,) 41
I

is finite [11].

We now introduce the notions of d-set and trace.

Definition 3.1. A closed set M is a d-set in R (0 < d < 3) if there exist a Borel

measure j with supp p = M and two positive constants c; and co such that

crrd < pu(B(P,r)(YM) < cord VP e M.

We point out that, from Definition 3.1, it follows that F'is a D-set, the measure pp is a
Dg-measure, S is a (Dy+1)-set and the measure g defined in (2.3) is a (Dy+1)-measure.

Definition 3.2. For f € W1¥(G) we define

Wf(P) = lim e [ gL,

B(Pr)NG

at every point P € G where the limit exists.
It is known that the limit exists at quasi every P € G with respect to the (s, p)-capacity

(see [1]).

Proposition 3.3. Let QQ, and S), be as above. Let }17 <s<1l+ }D. Then WS_%’p(Sh) is
the trace space to Sy of W*P(Q},) in the following sense:
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1. 7o is a continuous and linear operator from W*P(Qy,) to Wk%’p(Sh);

2. there exists a continuous linear operator Ext from sti’p(Sh) to WsP(Qy,) such
that vy o Ext is the identity operator in Ws_%’p(Sh).

2-Dy

From now on, we set =1 — . We now define the Besov space on S only for this

particular 3, which is the case of our interest. For a general treatment see [22].
Definition 3.4. We say that f € BE"(S) if f € LP(S,g) and it holds
1f1lBzo(s) < 400,

where

R A

f(pPHP
flogoes = Wl + | [ [ DS agppagry | o)

|P—P'|<1

We now recall a trace theorem.

Theorem 3.5. Let I' denote S, 2 x {0} and Q x {1}. BPP(I') is the trace space of
WLP(Q) that is:

1. There exists a linear and continuous operator o : WHP(Q) — BEP(T).

2. There exists a linear and continuous operator Ext : BPP(T) — WHP(Q), such
that o o Ext is the identity operator on BYP(T'), that is

’yo o EXt = [ng,P(F)

For the proof we refer to Theorem 1 of Chapter VII in [22], see also [16]. In the case
I' = S, then the smoothness index « is equal to 1—%. I =Qx{0}orI'=Qx{1},

then o =1 — 117; we point out that in this case the Besov space BY”, (I') coincides with
p

the fractional Sobolev space W'~ 5% (I).

In the following we denote by u|s and u|g, the trace of w on S and S, respectively.
Sometimes we will omit the trace subscript and the interpretation will be left to the
context.

The following theorem characterizes the trace on Sj, of a function in W#?(R3) (see [1]

for a general treatment of Sobolev spaces).

Theorem 3.6. Let u € WP2(R3) and 6, = (%)h = (3'7Pr)". Then, for 5 < g < >

ull s, < 22 o -~ (3.2)

where C is independent of h.
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Proof. We point out that every u € WB’p(R?’) can be expressed in the following way:
u:Gﬁ*ga gELp(R3)>

where G5 is the Bessel kernel of order 3 (see [22]). Then by Holder inequality we have

p

- /WMda—/ / 3@ - o) dy| do <

Sr IR3
/ (‘N/ Ga(z — )| [g(y)|P dy ([R/ Gz —y)|" " dy | do,
S, 3 3
where 0 < a < 1 will be chosen later. Now, by using Lemma 1 on page 104 in [22], we

get
/|G5(w — )| dy < ¢y,
with C} independent of h, if

(3-5)(1—-a)yp <3 (3.3)

Moreover, since S}, is a 2-set with constant ¢y = Cs (5,:1 (see Definition 3.1), again from

Lemma 1 on page 104 in [22] we get

/|G5($ —y)|*"do < Cy 5,7,

with Cy again independent of h, if

(3= B)ap < 2. (3.4)

Hence, by choosing a in order to satisfy (3.3) and (3.4), by using Fubini’s Theorem we

get
el s,y < Cl/ (‘R/Gg(fcy)“pg(y)pdy do =
S \R®
c: | ﬂawwwwrmww<aalmmw = O30l
R3
where Cj is a constant independent of h. O

The following theorem is a consequence of Theorem 1 in Chapter V of [22].



Convergence and density results for parabolic quasi-linear Venttsel” BVPs 9

Theorem 3.7. Let u € WPP(R3). Then, for % < B,

lullzr sy < Cllully (3.5)

Wﬁp R3)’

It is possible to prove that the domains @, are (¢, d) domains with parameters € and §
independent of the (increasing) number of sides of S,. Thus by the extension theorem
for (¢,0) domains due to Jones (Theorem 1 in [20]) we obtain the following Theorem
3.8, which provides an extension operator from W?(Q;,) to the space W1?(R?) whose

norm is independent of h.

Theorem 3.8. There exists a bounded linear extension operator Ext; : WLHP(Qp)
— WHP(R3), such that

[Ext vl @ey < Collolly (3.6)

Whr(Qp)

with C'y independent of h.

Theorem 3.9. There exists a linear extension operator Ext such that, for any 8 > 0
Ext : WPP(Q) — WPHP(R?),

1€t vl 5 < Callvly a0 (3.7)
with éﬁ depending on B
4 Convergence of Hilbert spaces
We introduce the notion of convergent

Hilbert spaces that we will use in the next sections. For further details and proofs of
the theorems see [21] and [23].

The Hilbert spaces we consider are real and separable.

Definition 4.1. A sequence of Hilbert spaces {Hp}, oy converges to a Hilbert space H
if there exists a dense subspace C C H and a sequence {Z}, .y of linear operators
Zn: C C H— Hj, such that

}}gilo | Znully, = llully for any u € C.

We define the space H = {U,H,} U H and define strong and weak convergence in H.

From now on we assume {Hp}, .y, H and {Z}},y are as in Definition 4.1.
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Definition 4.2 (Strong convergence in H). A sequence of vectors {up},oy strongly
converges to w in H if wy, € Hy, v € H and there exists a sequence {tp},,cy € C

tending to u in H such that

i 4~ =0

Definition 4.3 (Weak convergence in J(). A sequence of vectors {up}, . weakly con-
verges to w in H if up, € Hy, u € H and

(uh7 vh)Hh — (’LL, U)H
for every sequence {vy}, o strongly tending to v in J.

Remark 4.4. We note that the strong convergence implies the weak convergence (see

[4])-

Lemma 4.5. Let {uy}),cy be a sequence weakly converging to w in JC. Then

sup [[up|g, < oo, |lully < lim [uslly, -
h—o0 h—o0

Moreover, up, — u strongly if and only if ||ul|lg = lim ||up| #, -

h—o0 )
Let us recall some characterizations of the strong convergence of a sequence of vectors
{un}pen in H.

Lemma 4.6. Let u € H and let {up}, .y be a sequence of vector u, € Hy. Then

{un}pen strongly converges to u in I if and only if
(un, vn)m, — (U, v)n
for every sequence {vn}, o with vy, € Hy weakly converging to a vector v in H.

Lemma 4.7. A sequence of vectors {up},.y with u, € Hj, strongly converges to a

vector u in H if and only if
lunlly, —  lully  and
(un, Zn())m, — (u,0)u  for every ¢ € C.

Lemma 4.8. Let {uy}, oy be a sequence with uy, € Hy. If ||up|| m, is uniformly bounded,

then there ewists a subsequence of {up} ).y which weakly converges in .

Lemma 4.9. For every u € H there exists a sequence {up},cy, un € Hy strongly
converging to u in J.

We now define the G-convergence of operators (see Definition 7.20 in [15]).
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Definition 4.10. Let n € N, A,: H, — 22 A: H — 2 be multivalued operators.
We say that A,, G-converges to A, A, N A, if for every [z,y] € A (i.e. x € D(A) and
y € A(x)) there exists [z, y,] € An, n € N such that x,, — = and y, — y strongly in
H.
In the following we denote by L?(Q, m) the Lesbegue space with respect to the measure
m with

dm = dL3 + dg, (4.1)

where g is the measure defined in (2.3), and by the space L?(Q, m;,) the Lebesgue space
with respect to the measure m;, with

dmh = XthLg + Xgh(sth', (42)

where xq, and xg, denote the characteristic function of )5 and S), respectively.
Throughout the paper we consider H = L?(Q, m) where m is the measure in (4.1),
and the sequence {H},}, oy with Hj, = {L*(Q) N L*(Q, my,)} where my, is the measure

in (4.2) with norms

lully = llullZzgg) + lulslZasg Nulli, = lullizq,) + luls, 225, 5,0

Proposition 4.11. Let ¢;, = (%)h. Then the sequence {Hy}, o converges in the sense
of Definition 4.1 to H.

For the proof, see Proposition 4.1 in [35], where C' and Z}, in Definition 4.1 are re-

spectively C((Q)) and the identity operator on C(Q).

5 Energy functionals

From now on, let p > 2 (for the case p = 2, we refer to [20] and [27]). By proceeding
as in [8], we construct a p-energy form on F' (which has the role of Euclidean p-
Lagrangian d£(u,v) = |VulP~2VuVv dL3) by defining a p-Lagrangian measure £}, on
F'. The corresponding p-energy form on F' is given by

&p(u,v) = / AL (u, )

F

with domain D(F) = {u € LP(F, ur) : Eplu] < +oo} dense in LP(F, pup).
Proposition 5.1. D(F) is a Banach space equipped with the following norm
lulloge = (1l e, + Erful)>. (5.1)

As in [9] the following result can be proved.



Convergence and density results for parabolic quasi-linear Venttsel’ BV Ps 12

Proposition 5.2. For p > 1, D(F) is embedded in C®"(F), with
1\ In4
—(1--) 22
! ( p) In3

Remark 5.3. We point out that, for p > mf‘fiﬂ,

5.2 1s greater than one. In this case, for the Koch snowflake F, from Corollary 4.2 in

the Holder exponent n in Proposition

[9], the space CO"(F) does not degenerate to the space of constant functions.

We now define the energy form on S:

1 1
Bl = / Erfulda+ / / Dy ulPdydpir (5.2)
I F T

with domain D(S) defined as

D($) = O(8) A L([0. 1 D(F)) N W (0, - Lo (E)) ™, (53)
where | - [|p(s) is the intrinsic norm
[ullpes) = (Esfu] + [[ullfn(s.g)7- (5-4)

We now give an embedding result for the domain D(S). Unlike the two dimensional
case where there is a characterization of the functions in D(F’) in terms of the so-called
Lipschitz spaces (see Theorem 4.1 in [9]), for D(S) we do not have such characterization,
but the following result holds.

Proposition 5.4. D(S) is continuously embedded in Bg’p(S), forany 0 < B < 1.

Proof. We follow the proof in [25], adapted to our case.
We recall that

D(8) = CS) N L0, 1 DE) VW (0, T: 27 (F) .
Following [37], we define Bj}Y__,(S) = L([0,1]; BE!_.(F)) Y W'P([0,1]; LP(F)) for
e>0.
From Theorem 4.1 in [9] and Proposition 3, Chapter V in [22], it holds that D(F') =
B%;’O(F ). Moreover, this last space is continuously embedded in B%f _(F) fore >0
(see Proposition 5, Chapter VIII in [22]). Hence, from the definition of D(S), we
deduce that D(S) C Bjp)_. ;(S). Moreover, the embedding is continuous, i.e. there

exists a positive constant C' such that

lellsgs_. ) < Cllullogs) (55)

From the definition of B37__ ;(S)-norm we get
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1
ol o= | (10lagy oy + Nl + 1Dyl ) 0 <
0

1
C/ <||u||BP°° Tt HUHIZP(F) + ”DyUHIzp(F)> dL; <
0
1

C’/ (HUH%(F) -+ HuHiP(F) + ||Dyu||ip(p)) dl,.

From the definition of Eg and of the norm in D(F), we get

—&,1

HUHBPD’;’ ) < C(Eslu] + [lul7, S)) CHUH%(sy

i.e. the thesis.
For any Banach space X and for any 0 < 8 < 1

W((0,1]; X) € WPP([0,1); X).
Moreover if /3 is not integer, it holds

Whe([0,1); X) = B5([0,1]; X).

Hence if 0 < 5 < 1
By (S) € Lr([0, 1 B _.(F)) ( BY(0,1; L7(F)) €
Lr([0,1]; BE¥(F)) (N B ([0, 1]; LP(F)) = BZ* (),

where the last equivalence can be proved following [37]. We now prove that there exists

a positive constant C' such for every 0 < 8 < 1
[ullspr(s) < Cllullogs).- (5.6)

Indeed, from the above remarks, we get

sy < C / gy 40+ Nl gy | = Oy oy +
||U||W5p ([0,1];LP(F)) ) < C'(||u||Lp(01 LB _(F)) + HuHW“’ ([0,1];LP(F) ) CHUHBM —en(8)
From (5.5) we get (5.6). Hence the theorem is proved. O

Now we introduce the energy functional on (). Let us consider the space
V(Q,S) ={ueW"(Q) : uls € D(S), ulg =0}, (5.7)

where Q := (Q x {0}) U (Q x {1}).
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Let b be a continuous and strictly positive function on . We consider the energy

functional @, defined as follows:

%/ |Dul? dLs + Esluls] + 213 /b|u|p dg ifueV(Q,9),
Pplul =9 @ 5 (5.8)
+00 ifue H\V(Q,S).

From now on we denote by L”(Q, m) the Lebesgue space with respect to the measure

defined in (4.1).

Proposition 5.5. ®, is a weakly lower semicontinuous, proper and convex functional
i H.

For the proof see Proposition 2.3 in [28].

We now set

1-p
E;,h)[u]:‘Sh /( |Du[Pde dL1+5—h/ /|Dyu|de1 de, (5.9)
p p
I h Fh I

with domain

D(E) = W(Sy,).

We introduce the energy functional on the pre-fractal domain:

[ xauDupdgs + % [buldo + B itue V(Q.S),
ol =1 & S

“+00 iquHh\V(Q,Sh),
(5.10)
with
V(Q,Sh) = {u eW™(Q) : ul,, € D(EY), ulg, = o},
where we define €, == (@, x {0}) U (Q), x {1}).

By proceeding as in Proposition 2.3 in [28], we can prove the following result.

Proposition 5.6. CIJZ()h) 18 a weakly lower semicontinuous, proper and convex functional

m Hh-
6 Density theorems

In the notations of [37, page 8], we introduce the following space:

W(0,1) = LP([0, 1; D(F)) (W' ([0, 1]; L (F)). (6.1)
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This is a Banach space equipped with the norm

B =

[ullwo,) = (HuHip([o,u;@(F)) + HDyu”ip([o,H;Lp(F))) (6.2)

The following results hold.

Proposition 6.1. The space D([0,1]; D(F)) is densely embedded in W(0,1), that is

D(0, 1 D(F) ™ = w0, 1) (6.3)

Proof. One can easily adapt the proof of Theorem 2.1 page 11 in [37] to the case of

Banach spaces, by replacing all the L? spaces with the corresponding LP spaces. O
Proposition 6.2. D([0,1]; D(F)) C C(95).
Proof. See Proposition 5.2 in [20]. O

Theorem 6.3. The space D([0,1]; D(F')) is dense in D(S) with respect to the intrinsic

norm || - ||n(s)-
Proof. One can adapt the proof of Theorem 5.3 in [26] with small suitable changes. [
We now state the main Theorem of the section.

Theorem 6.4. Let Q, S and V(Q, S) be defined as in Section 2 and Section 5 respecti-
vely. For every u € V(Q, S), there exists v, € V(Q,S) (N C(Q) such that:

(1) ||ty — UHWLP(Q) — 0, forn — oo,
(2) [[¥n — ullpogmy — 0, for n — oo;
(3) Es[thy, —u] — 0, for n — 0.

In order to prove this Theorem, we need a preliminary proposition on trace and exten-

sion operators.

Proposition 6.5. Let S be as in Section 3. Let vy and Ext be the trace and the

extension operator defined in Theorem 3.5 respectively. Then
(1) If u € C(R®) \WHP(R?) then you € C(S) () BE"(S).
(2) If u € C(S)N BE*(S) then Ext(u) € C(R®) WP (R?).

Proof. One can adapt the proof of Proposition 5.5 in [20] with the obvious changes
when considering the case p > 2 instead of p = 2. O
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We are now ready to prove Theorem 6.4.

Proof. We follow the spirit of the proof of Theorem 5.4 in [26]. We start by proving
(1). Let us consider u € V(Q,S5), then u|s € D(S). From Theorem 6.3 there exists
{¢n} € D(0,1; D(F)) such that

lon — uls|lncs)y = 0 when n — oo.
We now set

uls on S,
0 on 0Q \ S,

where 0Q \ S = (2 x {0}) U (2 x {1}). We point out that u|s € BPP(S) for every
0 < a < 1 from Proposition 5.4. We denote by Bg’p (K') the Besov space on a closed set
K C R™ as defined in [21, page 356]. Since u|s belongs to B2P(S) for every 0 < a < 1,
we have that u belongs to Bg’p(ﬁQ) for every v < % + «. In particular, there exists
e > 0 such that @ € By (9Q). Since 0Q is a closed set in R?, from Theorem 1 in [21]
we have that there exists an extension operator Extyg from B (9Q) to W'TeP(R?).

If we set

U=

/ZZ = (EXtaQa) |Q,

this function in particular belongs to W1?(Q).
Let now @, := Ext(p,). Then from Proposition 6.5 (see [22])

Pu € WH(Q)NC(Q).
We now prove that ||, — ul|w1r(g) — 0. Indeed, from Theorem 3.5 and the inclusion
of D(S) in B(S) (see Proposition 5.4),
1B~ i) < Cillon — ulsllagris) < lpn ~ sl = 0

from the density Theorem 6.3.
Now let us consider the function u — @. This function belongs to W'?(Q) and it is
such that (u —1)|sg = 0, then u — 4 € W, ?(Q) (see Theorem 3 in [48]). There exists

{Nm ymen C C¢(Q) such that
[7m — (u — @) |lwro(g) — 0. (6.4)

Let {¢nm} denote the doubly indexed sequence of function {@, — 7,}. The sequence
{tn.m} belongs to WHP(Q) (N C(Q). From Corollary 1.16 in [3] we deduce that {1, ,,}
converges to u in WhP(Q) as n — oo. In fact there exists an increasing mapping

n — m(n), tending to oo as n — oo, such that
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Tl = Py [[wn@) = 1 [ = @n = Doy win) <

lim ([ — @ = Doy llwir@) + 180 — Tllwrrg))-

n—o0
Hence by applying Corollary 1.16 in [3] to the right hand side of the above inequality

it follows that
T = ol < Jim_ i {Jju =@ = mllwroo) +17 — llwisia}

The two terms in the sum tend to zero when m,n — oo, then

T [ty = ullwin) = 0. (6.5)

and also lim ||t m@m) — u|lwir@) = 0. Hence we conclude that
n—oo

||77Z)n,m(n) - u”lep(Q) — 0 when n — o0.

From now on we denote by 1, = ¥, mn). We now prove (2), that is

[9n = ullzo@m) = lom = ullr(@) + [t = ullzo(s) = 0. (6.6)
The first term in (6.6) tends to zero when n — oo since
[n = ullzr@) < llthn = ullwro)-
We now prove that also the second term in (6.6) tends to zero:

|0 — ullLr(sy = |@nls — mls — uls|lLr(s)
= |lon — uls|lrs) < |len — ulsllos),

and the last quantity tends to zero from the density of D(0,1; D(F)) in D(S). This
proves that 1, — u in LP(Q,m).
We now prove (3):

Es[(u —n)|s] = Esluls — ¥uls] = Esluls — ¢n] < [|uls — ¢nllns) — 0.

Hence the theorem is proved. O

We remark that we can prove a result similar to Theorem 6.4 also for the pre-fractal

case. We define the space
W (0,1) = L2([0, 1); WP(F,)) nWE2([0,1]; LP(Fy)).

Similarly to Proposition 6.1, we can prove that D(0,1; WP(F},)) is dense in W) (0,
1). But it turns out that

WM (0,1) = Wh(S,).
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We also point out that we can prove as in Theorem 6.2 that D(0, 1; WhP(F,)) € C(Sy).
Hence the following result holds.

Theorem 6.6. For every u € V(Q, Sy) there exists 1, € V(Q,Sy) N C(Q) such that:
(1) ||¢n - UHWLP(Q) — 0 fO?” n — 00;

(2) ||tn — ullLr(@my) — 0 for n — oo;
(3) Eg(zh) [V —u] = 0 for n — oo.

Proof. Let uw € V(Q, Sh), hence ulg, € D(E) = W'»(S,). From the density of
D(0,1; WIP(Ey,)) in WP(S},), there exists a sequence {@,} C D(0,1; W'P(F})) such
that

HSOn - UHWLp(Sh) — 0 for n — .

Since {¢,} € D(0,1; W'?(F},)), in particular it belongs to Wl_l’p(Sh) From the trace
Theorem 3.3 there exists an extension ¢, belonging to W1?(Qy); then, from Theorem
3.8, there exists an extension @, € W'?(R?). We point out that, since p, € C(S), as

in Proposition 6.5 we can prove that the extension of ¢, is continuous on Q. We set
¥y, = @nlo, hence ¥, € W?(Q). From Theorem 3.8 and Theorem 3.3 we get

[t — ullwrr) < Cill@n — ullwrrms) < Colldn — ullwirig,) SCSH%—UH 1l S

P(Sn) =
Callon = ullwings,),

and the last quantity tends to 0 for n — oo from the density of D(0,1; W'P(F},)) in
Wl’p(Sh).
As to (2), the following holds from (1) and the density of D(0,1; W'P(Fy,)) in WP(S},):

H% UHLp Qmn) — ‘|¢n UH P(Qp) + 5h”90n UHII))’(S;L) <
CIHwn u”wl p( + CQHSOH uHWLp(Sh) — 0.

We now come to (3):

h
EI(,)[l/Jn—u]gCHgon— — 0.

uHaﬂ’p(Sh)

Hence the thesis follows. O

Remark 6.7. The results obtained so far in this paper still hold if we consider the
more general case of fractal mixtures. Since our aim s to prove convergence results
(see Sections 7 and 8), we have to consider the equilateral case instead of the mizture,
since for the mixture case we are not able to make an appropriate triangulation of the

domain and this tool is crucial to prove the M-convergence.
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7 M-Convergence of the functionals

We recall the definition of M-convergence introduced by Mosco [39], extended to the
case of proper convex functionals in Banach spaces by T6lle (see Section 7.5, Definition
7.26 in [15]).

Let Hj, be a sequence of Hilbert spaces converging to a Hilbert space H in the sense
of Definition 4.1.

Definition 7.1. A sequence of proper and convex functionals {@fgh)} defined in Hy,
M-converges to a functional ®, defined in H if the following hold:
a) for every {v,} € Hy weakly converging to uw € H in H,

lim B (03] > B, ],

h—o00

b) for every u € H there exists {wy}, with w, € Hy, strongly converging to u in H
such that
Tim &) [wy,] < ®,[u).

h—oo P

The main theorem of this section is the following.

Theorem 7.2. Let §, = (3174 )h = (%)h. Let @, and ®Y" be defined as in (5.8) and
(5.10) respectively. Then cp]()h) M-converges to the functional ®,,.

We preliminary state the following propositions.

Proposition 7.3. If {v}, .y weakly converges to a vector w in H, then {vy}, o weakly

converges to u in L*(Q) and hlim on / o do = /cpu dg for every ¢ € C(Q).
— 00
Sp S
For the proof see Proposition 6.6 in [27].

Proposition 7.4. Let v, — u in W'(Q), b € C(Q). Then

5h/b|vh|pda—> /b|u|pdg.
5

Sh

Proof. The proof follows from Proposition 3.7 in [1]. ]

We are now ready to prove Theorem 7.2.
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Proof. We prove conditions a) and b) in Definition 7.1.
Proof of condition a). Let v, € Hj, be a weakly converging sequence in H to u € H.
We can suppose that v, € V(Q, Sy,) and

lim CIDI()h) [vp] < 00
h—o0

(otherwise the thesis follows trivially). Then there exists a ¢ independent of h such
that

1 b) 6" )
—/XQ,L|Dvh|de3+—h/b|vh\pda+ h /|Dvh|pda—|——h/|Dyvh]pda <ec (7.)
p p p p

Sh Sh

Sh

Let us suppose that v, is continuous on Q. From (7.1), in particular we have that
|vnllwie(g,) < c. For every h € N from Theorem 3.8 there exists a bounded linear
operator Ext: W?(Q;) — WHP(R?) such that

[Ext vp |l sy < Cllvnllwiegy < cC,

with C independent of h.
We now set 0, = Extuy|g. Then 9, € W'P(Q) and ||[04]|w1r(g) < ¢C, hence there
exists a subsequence, still denoted by 0y, weakly converging to ¢ in W?(Q). We point
out that 9y, strongly converges to ¢ in LP(Q) and also in L*(Q) since p > 2. From
Proposition 7.3, v, weakly converges to u in L?(Q). We prove that © = u £3-a.e., that
is

/(@ —u)pdLs; =0

Q
for each p € L*(Q). Indeed, we can write

/(@—u)@dLg = /(@—@h—i-ﬁh—u)(deg

Q Q

— /(q} — Op)dLs + /(vh —u)pdLs + / (0p, — u)p dLs.

Q Qn Q\Qn

(7.2)

For every e > 0 there exists h € N such that each term in the sum of the right-hand
side of (7.2) is less than ¢/3. Since 9, — © in L*(Q) and v, — u in L*(Q) we deduce
our claim for the first two terms. As to fQ\Qh(@h —u)p dLs, from Hoélder inequality we
deduce that

[ 1600 = el des < ellmarn linlze + lula) < ¢/3
Q\Qn
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since |Q \ Qu| — 0 as h — co.
We now prove that

lim [ xq,|Dvn|?dLs > /|Du|p dLs. (7.3)
h— o0
Q

It is enough to prove that xq, Dvp, — Du in LP(Q), from here the claim will follow
from the semicontinuity of the norm. Since xq, Dvy = xq, D0, this amounts to prove
that fQ Xq, DinpdLs — fQ Dug dLs for every ¢ € L' (Q).

It holds that

/prdLg — /D@hgodﬁg = /(Du—D@h)(de;; — / DoppdLs.
Qn Q Q\Qn

The first term vanishes as h — oo since Do, — Du in LP(Q). Now we estimate the

second term [, , [Dopp|dLs. We have

/ Dipp dLs < [l \ou IOl zr (@) — 0
Q\Qn

Hence (7.3) holds.

Moreover, the following

5, " 1
lim /|Dvh\pda > —/eF[u] dg,
h—oo D p
S 1
holds as a consequence of Theorem 3.5 in [I1] and Fatou Lemma. We are left to prove
that
. Op 1
lim — [ |Dyvp|Pdo > = [ |DyulPdg. (7.4)
h—oc0 P & p ’
h

First we point out that, since v;, weakly converges to u in W1?(Q), it follows that vy,
strongly converges to u in W*P?(Q) for every s € (0,1). Hence, from Theorem 3.5, vp,|g
strongly converges to uls in B”",_,, (S), so in particular vy|s strongly converges to uls
in LP(S).

We now set wy, := D,v, € LP(Q). In order to prove (7.4), we preliminary prove that

p

[wnllzees) < e
From the density of C=(Q) in WP(Q) (see [38, Theorem 2, page 28]), there exists a
sequence {w]'}, € C=(Q) such that w} —— wy, in LP(S),). We want to prove that
n—oo

|wh | zr sy < c.
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By proceeding as in the proof of Theorem 4.5 in [29], since w} is continuous on S, we

can estimate the above norm in terms of the corresponding Darboux sums, and we get

/|wh|pdg< 5h/|wh|da (7.5)

S}L

Passing to the upper limit as n — oo, since w} strongly converges to wy, in LP(S}),

from (7.1) we get
Tim [lwp|zns) < c.

Since w) is bounded in LP(S), there exists a subsequence (still denoted by wy}) we-
akly converging to a function wj; in LP(S) for n — oo. Moreover, from the lower

semicontinuity of the norm, we have

[wh [ Les) < €
The above inequality implies that there exists a subsequence of wj, again denoted by
wj, weakly converging to a function w* in LP(S). By using again the lower semicon-
tinuity of the norm, we get

|lw*||zr(sy < lim [ |wy|Pdg < lim lim | |wp|Pdg < lim lim (5h/\wmpd0:

h—)oo h—o0 n—>oo h—o00 n—00

11m5h/|wh|pda— hméh/|D vp|P do,

h—o00 h—o00

where in the last inequality we used (7.5). Hence (7.4) follows if we prove that w* = D,u
a.e. in LP(S).

By using the definition of weak convergence and distributional derivative, we get V ¢ €
L7 (8)

h—o00 n—00

/w*gpdg = lim /chpdg = hm lim [ wypdg = lim /whgodg =
h—o0 h—o0
S S

S
lim [ Dyuppdg = — lim /thygo dg = —/uDygp dg = /Dyugp dg,
h—00 h—o0

5 s 5 5

i.e. the thesis. We conclude the proof taking into account the liminf properties of the
sum and Proposition 7.4.

If vy, is not continuous on @, from Theorem 6.6 there exists w;, € V(Q,Sy) N C(Q)
such that [Jv, — wpllwre) < %5 o — wallLr(@umy < + and @g’)[wh] <ol )[ n + 3

By triangle inequality we easily have that wy tends to u weakly in 3. Hence from the

previous step we have

| . 1 .
M) < lim M [wy] < lim <(I)](Dh) [va] + E) = lim &}V [vy],

h—o0 h—o00 h—o0
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i.e. the thesis.

Proof of condition b). We have to prove that for every v € H there exists {wp},cy
strongly converging to u in H such that

O, [u] > Tim &M [wy).

~ h—oo P

We can suppose that u € V(Q,S). Indeed, if u ¢ V(Q, S) then ®,[u] = +oo and from
Lemma 4.9 it follows that there exists a sequence {vj},.y converging to v in H and
hence h@@éh) [vp] < ®pu] = +o0.

Let then v € V(Q, S), i.e. u € W'?(Q) and u|r € D(S). For the case p = 2, we refer

to [27]. Here we investigate the case p > 2. We have to consider two cases.

Step 1. We suppose that u € C(Q), hence u € H. We extend by continuity u to T and
we put u this extension. Following the same approach of [30] and [29], we introduce
a quasi uniform triangulation 7, of T made by equilateral tetrahedron 7T; ,jL such that
the vertices of the pre-fractal surface S, are nodes of the triangulation at the h-th
level. Let 8;, be the space of all the functions being continuous on T and affine on the
tetrahedrons of 7,. We indicate by M} the nodes of 73, that is the set of the vertices
of all Tf; . For a given continuous function u, we denote by I,u the function which is
affine on every T,{ € 7, and which interpolates u in the nodes P;; € M, NQ,. We set
wy, = Ipu and we prove that {wy,} strongly converges to u in H, which is equivalent
to prove that (see Lemma 4.6) (wp,vn)m, — (u,v)y for every sequence {v,} weakly
converging to a vector v in H.
We know that

[[wn — UHWLP(‘J') — 0 (7.6)

as h goes to oo (see [13]) and hence [jws, — ul[y15q) = 0.

From Theorem 3.6, there exists a constant ¢ independent of h such that
_1
2
[[wn — UHLQ(S,L) < cdy,® flwn — UHWLP(Q) .
Then we have

0 < [(wh,vp)m, — (u,v)g| = /whvhd53—|—5h/whvhda—/uvd£3—/uvdg
Qn Sh Q S

= |(wn — u, V) 2(Qp) + On /(wh —w)vpdo + (u,vp) g, — (u,0) | <
Sh

< |(wh - U, vh)LQ(Qh)l + ‘(\/ On(wn — ), V/Onvr)r2(s,)

+ [(w, vp) m, — (u,v) | <



Convergence and density results for parabolic quasi-linear Venttsel” BVPs

< lwn = ull g2y lvnll 2y + VO llwn — ullp2(s,) VVOn llvall (s,
+ (u, vn) m,, — (u, )|

The claim follows since v, — v in H, therefore sup ||vp|| g, < oo, and
h

Vo lwn = ull 2,y < cllwn —ull g -

24

We now prove condition b) for the sequence wy,. We note that from Proposition 7.4

lim 5h/b|wh|p do = /b|u|pdg.
h—00

Sh S
We have that
/ |th|de3 S /|th|de3,

Qn Q

then, by taking the limit for A — oo, we have the thesis (since ||D(wy — u)| 10 ()

for h — 00).

We have only to prove that
lim E(h) [wy] < Eslulg].
h—o0

Since wy, = I,u, we have that

wp, =mil+ny+q; 1€ [lj,ljﬂ], Y € [Yi, Yis1),

— 0

where [; = (j —1)3 " and y; = (i —1)3 " for j=1,...,3N,i=1,..., M. Hence we

get
51_p M 3N

Z Z j+1 (yz+1 Yi ) <

=1 j=1

5, "
/dy/|th|pd€—

p Dh M 3N

ZZ wh j+1l+1 wh<P )) =

=1 j=1
pl)hM3N

SO Prarin) — ulP)Y < / & rluldL,.

i=1 j=1 T

Passing to the upper limit, we get
1_

dy Pl < /EF[u]dlll.

I F) T

h—oco D

In the same way one can prove that

hm@/dy/m wh|pd€<//|D ulPdLydpp.
h—oo D

1 F, F
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Taking into account the limsup property of the sum the conclusion of the theorem
follows.

Step 2. If u € V(Q,S), but u is not continuous, from Theorem 6.4 there exists
Y, € V(Q,S)NC(Q) such that v, — uin H and [|¢, — ully(gs — 0. Let n € N
fixed such that ||¢, — ullv(g,s) < L and |[¢h, —ullw < L. By ¢, we denote a continuous
extension in 7.

From Step 1 we have that for every fixed n € N I1, strongly converges to 1, in H,
I, converges to ¥y, in WP (T) when h — oo and

h—o0

Passing to the upper limit for n — oo to both sides of the above inequality we obtain

o (T @ (7,0,]) < Ton @, [45,] = @, fu].

n—oo0 \h—o00

We now want to apply Corollary 1.16 in [3] for proving that there exists an increasing
mapping h — n(h) such that, denoting by w, = Ihzﬂn(h), we have that w;, converges to

w in H and hh_m o [wp] < ®,[u]. To this aim we have to prove that
—00

n—o00 h—oo

for every {v,} weakly converging to v in H. Indeed we have

\(’wh,mvh)Hh - (U, ’U)H| < \(’wh,mvh)Hh - (”lﬁn,U)H + (Jn - va)H| <
|(Whns V1) by, — (P, 0) |+ [0 — ullellvlle < (Wi, v0)m, — (Wn, 0)E| + £
Passing to the upper limit for h — oo, we obtain
lim |(Whns V), — (W, 0)| — 0.
h—oo

Then Corollary 1.16 in [3] provides the thesis. O

In the following Theorem we deduce the G-convergence of the associated subdifferen-

tials.
Theorem 7.5. CIDéh) M-converges to @, in I if and only if 8@,(]1) G-converges to 0P,,.

For the proof see Theorem 7.46 in [15]. This result will be crucial for the convergence

of the solutions of the nonlinear abstract Cauchy problems.
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8 Convergence of the solutions

We now consider the abstract homogeneous Cauchy problem

du T
(P) o+ Au>0, tel0,T]
u(0) = uy,

where A is the subdifferential of ®,, T"is a fixed positive number, and v, is a given
function. We now recall some results on the properties of nonlinear semigroups ge-
nerated by the (opposite of) subdifferential of a proper convex lower semicontinuous
functional on a real Hilbert space (see Theorem 1 and Remark 2 in [0], see also [7]).
According to [, Section 2.1, chapter II|, we say that a function u : [0, 7] — H is a strong
solution of (P) if u € C([0,T]; H), u(t) is differentiable a.e. in (0,7T), u(t) € D(—A)
a.e and 9% + Au 3 0 for a.e. ¢ € [0, 7.

Theorem 8.1. Let ¢ : H — (—00,400] be a proper, convex, lower semicontinuous

functional on a real Hilbert space H, with effective domain D(p). The subdifferential

J¢ is a maximal monotone m-accretive operator. Moreover, D(p) = D(0p). —0p

generates a (nonlinear) Co-semigroup {T'(t)}+>0 on D(g) in the following sense: for

each ug € D(y), the function u:= T(-)ug is the unique strong solution of the problem

ue C(Ry; HYNWEX((0,00); H) and u(t) € D(p) a.e.,

d
d—?—l—&p(u) 50 ae on Ry,

u(0,2) = up(x).

In addition, —d¢ generates a (nonlinear) semigroup {T(t)}=o on H, where for every

t >0, T(t) is the composition of the semigroup T(t) on D(yp) with the projection on

the convex set D(p).

In our case it turns out that, from Theorem 8.1, the subdifferentials 0®, and 8@;’”
are maximal, monotone and m-accretive operators on H and Hj respectively. Then,
if we denote with 7),(t) and 7" (t) the nonlinear semigroups generated by —0®, and
—é@gl) respectively, these semigroups are strongly continuous and contractive on H
and Hy, (see Proposition 2.5 in [28] for the fractal case).

Theorem 2.7 in [28] states the following result.

Theorem 8.2. If ug € D(—A), then (P) has a unique strong solution u € C([0,T];
H) defined as u = Ty(-)ug such that w € WY2((§,T); H) for every 6 € (0,T). Moreover
u € D(—A) ae. forte (0,T), Vit e L*(0,T; H) and ®,[u] € L*(0,T).

Moreover, from Theorem 2.6 in [28] it can be proved that the solution u of problem
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(P) solves the following problem (P) on @ for t € (0,7T] in the following weak sense:
(& _Au=0, inL"(Q)

a w>L2<s,dg>,L2<s,dg) + (GulDul™, ¢><BZ"’<S)>’,B§’?<S>

(P) < (blu|P~2u,v) + Es(u,v) =0 for every ¢ € D(9),
u=20 in Wi’p(ﬁ),

u(0, P) = uo(P) in L2(Q, m),

LP' (8,dg),LP(S,dg)

\
where we recall that Q = (2 x {0}) U (Q x {1}).
We now come to the pre-fractal case. For each h € N fixed, we consider the abstract

homogeneous Cauchy problem

dup

=L+ Apup 30, te [O,T]

(o) @
uh(()) = Uy

where A}, is the subdifferential of @éh), T is a fixed positive number, and uéh)

is a given
function.
Before stating existence and uniqueness results we give a characterization of Aj,. We

recall that Q, = (Qn x {0}) U (Qn x {1}).

Theorem 8.3. Let uy(t) belong to V(Q, Sy) for a.e. t € (0,T], and f be in Hy,. Then
feopl [up] if and only if

( —Apuh = f in Lpl(Qh)a
Oun | Tyqy, [P—2 > On (blup [P~ 2u
<8nh‘ h| a¢ L N + h< | h| h7¢>Lpl(Sh),Lp(S;L>
w P s)we s,

(Pn) S =0, 7 (Apun, ¥)

= (Sh <f7 ¢>L2(sh),L2(Sh)
\ Un = 0 m Wﬁ’p(Qh%

- L — 0n (Dpyun, )
w—Lp'(5,),Wwlp(s;)

for every 1 € WhP(Sy,),

w=LP' (5),),WLP(5),)

ouy,

ons denotes the normal derwative across S and Ay, = div(|D,[P*D,).

where

Proof. Let f € 8@,@ [up], i.e. (IJZ()h) [v] — (IDZ(,h) [un] > (f,v—up)m, for every v € V(Q, Sh):

/f(v_uh)d£’3+5h/f(v—uh)d0 <
Qn Sh

1 0
> [ oD = D) agy+ 2 [ (o = junpydo -+
Q Sn
l—p 5
5’; /(|Dv|p — |Dup|P) do + Eh (ID,v|? — |Dyun|?) do. (8.1)

Sh Sh
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By choosing v = uy, + t1, with ¢» € V(Q, Sy,) and 0 <t < 1in (8.1), we obtain

tQ[fdenghS[fwda <

1 )
]—?/XQh(lD(UthWﬂp— |Duh|p)dL3+Eh/b(\uh+tw|P— |un|”) do+
Sh,

Q

5, " 0

= [(DGn+ ) = DunP)do+ % [ (D un + t0)P ~ Dyl o (52
Sh Sh

Now, if ¢ € D(Qp,), from (8.2) we have that

/f@z)dzg < 1/ (IDCun +t0)|” = Dunl?) - o
D t

Qn Qn
Then, by passing to the limit for t — 0T, we get

/f¢dzg < /|Duh|p_2Duh Dy dLs.
Qn Qn

By taking — in (8.2) we obtain the opposite inequality, and hence we get

/f¢dL3:/|Duh|”_2DuthdL3.
Qn Qn

In order to apply Green formula for Lipschitz domains (see [7] and [1])

0

/]Du|p_2Dqud£3 = <_au ]Du|p_2,¢]5h> +
nh / 1

Qn w2 s w e sy

ou B
<a—nhyDu|p 27¢’Q,L> —/Apuwdzzg

1 .7 1
[y 2 P~
w P (@) we (6 Qn
h h

we ask that w := |Du,|[P~2Duy € (L5 (Qn))? = {w € (LP(Qy))? : divw € LY (Qn)}.
Since p > 2, then p’ < 2, therefore if we choose f € L*(Qy) in particular f € LP(Qy).
Hence, taking into account that 1 € D(Qy), it holds that —Aju, = f in LP(Qy,) (in
particular —Apuy, = f in L?(Qy)) then it holds a.e. in Q.

We go back to (8.2). Dividing by ¢ > 0 and passing to the limit for ¢ — 07, we get

/fwdﬁg—i-(sh/fwd(f g/]Duh]p2Duthd£;3+(5h/bluh]pQuhwda
Qn

Sh Qn Sh

‘»—t

+5,1l_p/]Duh\p2Duthda+5h/\Dyuh\p2DyuhDyw do.
Sh Sh
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As above, by taking —i we obtain the opposite inequality, hence we get the equality.

Then, by using Green formula for Lipschitz domains and since —A,u;, = f in L (Qp),

we have
o [ fuda
S
= / (5h b|uh|p*2uh w + 5}11710 |Duh|p*2Duth + (Sh |Dyuh|p*2DyuhDyz/1) do
B (53)
ou 8.3
+ < " | D[P~ 2,¢|sh>
wfi p/(sh) w% (Sn)
3uh p—2
+ |Duh‘ 71/}|Qh
W_i’pl(ﬂh) W% )

We can define A, as a variational operator A, : Wy P(S,) — W1 (S,) in the following
way:
/|Dz|p_2Dsz do=— <Ay 2,0 >p1ms,) wings,) (8.4)

for z,w € Wy*(Sy). We can do the same thing for the last integral in (8.3) where the
gradients with respect to y appear, by introducing the operator A, , (i.e. the p-Laplace
operator with respect to y). Then from (8.3) we have that

8uh

5hf = 5hb|uh|p 2uh - (51 pA pUR + — 8

|Duh|p 2 5hAp,yuh (85)
holds in W™ #" 7(S,) and w, = 0 in W P(0).

We want now to prove the converse. Let then u;, € D(CI> ) be the weak solution of
problem (P,). We have then to prove that (I{E,h)[ | — o [un] > (f,v — up)m, for every
vE D(@I(,h)). By using the inequality

%(W — |bf?) > [6/P2b(a — b) (8.6)
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one gets
M) — dM[uy] > / IDuy [P~ 2Duy Do dLg — / |DuyPdLs +
(5}1L_p/]Duh]p2DuhDvdo—(5}1L_p/\Duh]pdo +

5h/\Dyuh\p2DyuhDyv da—éh/lDyuh]pda +

5 / blun P2 do — 6, / blunl? dor (8.7)

Sh Sh

Since wuy, is the weak solution of (Ph), by using as test functions v and u, we have

W] — @Wug) > (f,v)m, — (f, un)m,,

i.e. the thesis. O
By proceeding as in Theorem 2.6 and Theorem 2.7 in [28] one can prove the following
result.

Theorem 8.4. If uéh € D(=Ay), then (P,) has a unique strong solution wj, €
C([0,T]; Hy) defined as up = ngh)( )u(()h) such that u, € WY2((6,T); Hy,) for every
§ € (0,T). Moreover u, € D(—Ay) a.e. fort € (0,T), Vt& € L*(0,T; Hy) and
0\ [uy] € LY(0,T).

Moreover it follows that the solution u; of problem (P,) solves for each h € N the

following problem (ﬁh) on Qp, for t € (0,7 in the following weak sense:

( duh — A plp = in Lpl(Qh)
d’th ouy, p—2 >
a ’wh>L2<sh>,L2<sh> <8"h|Du 7% ¥ L .
. w oV s w e (s
= +6p, (blup, [P~ 2uy, — & P (A up,
(Ph) h< ‘ h‘ h wh>LPI(Sh),LP(Sh) h < ph wh>w L' (5,),Wwlp(sy)
_6h <Ap,yuh7 ¢> =0 V wh € Wlp(sh)a
w=10(5,),wlp(sy,)
Up = 0 in Wi’p(flh),
un(0, P) = ul”(P)  in LX(Q) N L*(Q, my)

\

Theorem 7.2, Theorem 7.5 and Theorem 7.24 in [15] allow us to deduce that the pre-

fractal solutions converge in a suitable sense to the limit fractal one.



Convergence and density results for parabolic quasi-linear Venttsel’ BV Ps 31

Theorem 8.5. Let Hy,, H, @éh), ¢, and 05, be as in Theorem 7.2. Let Téh)(t), T,(t),
ugl) and ug be as in Theorems 8.2 and 8.4. If u(()h) — ug strongly in H, then

TW () ul —— T, (t) ug

p h—o00

strongly in H for every t > 0.
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