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Introduction

Aim of this paper is to study a parabolic problem for the regional fractional p-Laplacian

with Robin (Venttsel’) boundary conditions in irregular domains via a constructive

approach. Namely, our goal is not only to study the problem at hand but also to

approximate the solution, if any, in terms of smoother solutions. This is a key point

also in view of numerical approximations.

Fractional operators describe mathematically many physical phenomena exhibiting de-

viations from standard diffusion, the so-called anomalous diffusion. It is an important

topic not only in physics, but also in finance and probability ([1, 26, 41, 43]; for a

tutorial see [48]).

Several models appear in the literature to describe such diffusion, e.g. the fractional

Brownian motion, the continuous time random walk, the Lévy flight as well as random

walk models based on evolution equations of single and distributed fractional order in

time and/or space [16, 23, 40, 43, 46].

The diffusion processes – which often take place across irregular interfaces or boundaries

– are governed, in some situations, by the regional fractional Laplacian, therefore a

rigorous formulation is needed.

In the literature, results for boundary value problems for the regional fractional Lapla-

cian with Dirichlet, Neumann, Robin or Venttsel’-type boundary conditions on Lips-

chitz domains, can be found in [20], [21] and [22] along with the physical motivations.

For the case of the fractional Laplacian with Robin boundary conditions in Lipschitz

domains, the reader is referred to the recent paper of Claus and Warma [12]. The

results on the regional fractional p-Laplacian in piecewise smooth domains are more

recent [49, 50, 19].

As concerning Venttsel’-type boundary value problems in irregular domains, possibly

of fractal type, among the others we refer the reader to [37, 39, 35, 13, 36]. The Robin-

Venttsel’ problem for the (linear) regional fractional Laplacian in irregular domains

has been investigated recently in [14], where also a constructive approach is developed.

The nonlinear case of the regional fractional p-Laplacian is completely unexplored and

it will be object of our investigation.

As we will see, the Mosco-convergence (M-convergence) of suitable energy functionals

is a cornerstone for the constructive approach.

More precisely, in this paper we consider the following evolution problems for the

regional fractional p-Laplacian with dynamical Robin-Venttsel’ boundary conditions.
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The problems can be formally stated as:

(P̃ )


∂u
∂t

(t, x) + (−∆p)
s
Qu(t, x) = f(t, x) in (0, T ]×Q,

∂u
∂t

+N p′(1−s)
p u+ b|u|p−2u = f on (0, T ]× ∂Q,

u(0, x) = u0(x) in Q,

and, for every n ∈ N,

(P̃n)


∂un
∂t

(t, x) + (−∆p)
s
Qn
un(t, x) = f(t, x) in (0, T ]×Qn,

δn
∂un
∂t

+N p′(1−s)
p un + δnb|u|p−2u = δnf on (0, T ]× ∂Qn,

un(0, x) = u
(n)
0 (x) in Qn,

where Q ⊂ R3 is a three-dimensional Koch-type cylinder and {Qn} is a sequence of

suitable polyhedral domains approximating Q (see Section 1.1 for details).

Here (−∆p)
s
Q and (−∆p)

s
Qn

denote the regional fractional p-Laplacians (see (3.1)),

s ∈ (0, 1), p > 1, N p′(1−s)
p u is the fractional normal derivative to be suitably defined,

f , b, u0 and u
(n)
0 are given functions, while T and δn are positive numbers.

Firstly, we will focus on giving a rigorous formulation of the parabolic problem for

the regional fractional p-Laplacian with dynamical boundary conditions in irregular

domains, and in suitable smoother approximating domains. Secondly, we will prove

that the approximating solutions of problems (P̃n) converge in a suitable sense to the

(limit) solution of problem (P̃ ).

To this aim, we introduce a suitable notion of p-fractional normal derivative on irregu-

lar sets, via a generalized fractional Green formula, and we prove that it is an element

of the dual of a suitable Besov space defined on ∂Q (see Theorem 3.2).

We then consider the fractional energy functional Ep,s defined in (2.1), which is proper,

convex and weakly lower semicontinuous, and the corresponding associated subdifferen-

tial As. In Theorem 4.6 we prove, via a semigroup approach, existence and uniqueness

of a strong solution for a suitable abstract Cauchy problem (P ) for the operator As. We

prove regularity properties of the semigroup, i.e. order-preserving and non-expansive

on L∞, in Theorem 4.5. By applying Theorem 4.8, we prove that problem (P̃ ) is the

strong formulation of the abstract problem (P ). Similar results for the approximating

problems (P̃n) hold (see Theorem 4.9).

In order to study the asymptotic behavior of the approximating solutions, we consider

the fractional functionals Ep,s and E
(n)
p,s on L2(Q,m) and L2(Q,mn) respectively (see

(1.6) and (1.7)). In Theorem 4.12 we study the asymptotic behavior of the solutions

of problems (Pn); the functional setting is that of varying Hilbert spaces (see Section

1.3).
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We use the notion of M-convergence [42] of the energy functionals adapted by Tölle

to the nonlinear framework in varying Hilbert spaces [45]. The M-convergence of the

functionals is equivalent to the G-convergence of their subdifferentials A(n)
s , which in

turn is equivalent to the convergence of the nonlinear semigroup generated by −A(n)
s

(see [3] and [9] for the case of a fixed Banach space).

In Theorem 2.6 we prove the M-convergence of the functionals, which yields the con-

vergence of the solutions in a suitable sense (see Theorem 4.12) via the convergence

of the semigroups given in [45, Theorem 7.24]. The choice of the factor δn, which

accounts for the jump of dimension between ∂Q and ∂Qn, is crucial in the proof of the

M-convergence.

We point out that our results can be extended to the more general class of Jones

domains [27] as in [14]. Here, for the sake of simplicity, we confine ourselves to the

model domain Q.

The plan of the paper is the following.

In Section 1 we recall some preliminary results on traces and varying Hilbert spaces.

In Section 2 we introduce the energy functionals E
(n)
p,s and Ep,s respectively and we

prove the M-convergence.

In Section 3 we recall the definition of fractional regional p-Laplacian and we intro-

duce the notion of weak fractional normal derivative by proving a generalized fractional

Green formula.

In Section 4 we prove existence and uniqueness of a strong solution for the correspond-

ing abstract Cauchy problems and we give a strong interpretation. We prove that the

associated semigroups are Markovian. We also prove the convergence of the solutions

un to u in the framework of varying Hilbert spaces.

In Section 5 we discuss some open problems and make some comparisons with the

linear case.

1 Preliminaries

1.1 The fractal domain

Given P, P0 ∈ RN , in this paper we denote by |P − P0| the Euclidean distance in RN

and by B(P0, r) = {P ∈ RN : |P − P0| < r}, for r > 0, the Euclidean ball. We also

denote by LN the N -dimensional Lebesgue measure.

We denote by F the Koch snowflake, i.e. the union of three co-planar Koch curves F1,

F2 and F3 (see [17]). We assume that the junction points A1, A3 and A5 are the vertices

of a regular triangle with unit side length, i.e. |A1 −A3| = |A1 −A5| = |A3 −A5| = 1.

For i = 1, 2, 3, Fi is the uniquely determined self-similar set with respect to a family Ψi
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of four suitable contractions ψ
(i)
1 , . . . , ψ

(i)
4 , with respect to the same ratio 1

3
(see [18]).

The Hausdorff dimension of the Koch snowflake is given by df = ln 4
ln 3

. One can define,

in a natural way, a finite Borel measure µ supported on F by

µF := µ1 + µ2 + µ3, (1.1)

where µi denotes the normalized df -dimensional Hausdorff measure restricted to Fi, for

i = 1, 2, 3. Moreover, in the following we denote by Fn the closed pre-fractal polygonal

curve approximating F at the n-th step.

By Ω ⊂ R2 we denote the open bounded set having as boundary the Koch snowflake F

and, for every n ∈ N, by Ωn ⊂ R2 we denote the open bounded set having as boundary

Fn.

We define the “cylindrical-type” surfaces S = F × I and, for every n ∈ N, Sn = Fn× I,

where I = [0, 1]. By Q we denote the open cylindrical domain having S as “lateral

surface” and the sets Ω×{0} and Ω×{1} as bases; in the same spirit, for every n ∈ N we

denote by Qn the three-dimensional cylindrical domain having Sn as lateral surface and

the sets Ωn×{0} and Ωn×{1} as bases (see Figure 1). We set Ω̃ = (Ω×{0})∪(Ω×{1})
and Ω̃n = (Ωn × {0}) ∪ (Ωn × {1}) respectively.

Figure 1: The fractal domain Q.

The pre-fractal domains Qn are non-convex and polyhedral domains such that

1) Qn is bounded and Lipschitz;

2) Qn ⊆ Qn+1;

3) Q =
∞⋃
n=1

Qn.
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1.2 Functional spaces and trace theorems

We begin by introducing suitable measure on the lateral surfaces S and Sn. By ` we

denote the natural arc-length coordinate on each edge of the polygonal curve Fn. By

d` we denote the one–dimensional measure given by the arc-length `.

We introduce on S and Sn the measures

dg = dµF × dL1, (1.2)

and

dσ = d`× dL1

respectively, where µF is the df -normalized Hausdorff measure on F given by (1.1) and

L1 is the one-dimensional Lebesgue measure on I.

Let G (resp. S) be an open (resp. closed) set of RN . By Lp(G), for p > 1, we denote

the Lebesgue space with respect to the Lebesgue measure LN , which will be left to

the context whenever that does not create ambiguity. By Lp(∂G, µ) we denote the

Lebesgue space on ∂G with respect to a Hausdorff measure µ supported on ∂G. By

D(G) we denote the space of infinitely differentiable functions with compact support

in G. By C(S) we denote the space of continuous functions on S.

By W s,p(G), where 0 < s < 1, we denote the fractional Sobolev space of exponent s.

We point out that it is a Banach space if we endow it with the following norm:

‖u‖pW s,p(G) = ‖u‖pLp(G) +

∫∫
G×G

|u(x)− u(y)|p

|x− y|N+sp
dLN(x)dLN(y),

Moreover, for u, v ∈ W s,p(G) we set

(u, v)s,p :=

∫∫
G×G

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
dLN(x)dLN(y).

In the following we will denote by |A| the Lebesgue measure of a measurable subset

A ⊂ RN . For f in W s,p(G), we define the trace operator γ0 as

γ0f(x) := lim
r→0

1

|B(x, r) ∩ G|

∫
B(x,r)∩G

f(y) dLN(y) (1.3)

at every point x ∈ G where the limit exists. The limit (1.3) exists at quasi every x ∈ G
with respect to the (s, p)-capacity (see [2], Definition 2.2.4 and Theorem 6.2.1 page

159). In the sequel we will omit the trace symbol and the interpretation will be left to

the context.

We need two trace theorems, one for the pre-fractal and one for the fractal case. We

begin with the trace theorem in the pre-fractal case. For the proof we refer to [10].
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Proposition 1.1. Let 1
p
< s < 1. Then W s− 1

p
,p(∂Qn) is the trace space to Sn of

W s,p(Qn) in the following sense:

(i) γ0 is a continuous and linear operator from W s,p(Qn) to W s− 1
p
,p(∂Qn);

(ii) there exists a continuous linear operator Ext from W s− 1
p
,p(∂Qn) to W s,p(Qn) such

that γ0 ◦ Ext is the identity operator in W s− 1
p
,p(∂Qn).

As to the fractal domain Q, we note that Q is a (ε, δ) domain in the sense of Jones [27]

with boundary an arbitrary closed set in the sense of Jonsson [28].

We recall the definition of Besov spaces on an arbitrary closed set F̃ specialized to our

case. For generalities on these Besov spaces, we refer to [28]. Let us suppose that there

is a measure µF̃ on F̃ satisfying the following condition: for 0 < d1 ≤ d2 ≤ N , there

exist two positive constants c̃1 and c̃2 such that

c̃1 k
d1µF̃(B(x, r)) ≤ µF̃(B(x, kr)) ≤ c̃2 k

d2µF̃(B(x, r)) (1.4)

for all x ∈ F̃ , r > 0, k ≥ 1 such that kr ≤ 1. When d1 = d2, the set F̃ is a d-set (see

[29]). We remark that S is a (df + 1)-set, while the boundary ∂Q = S ∪ (Ω × {0}) ∪
(Ω× {1}) is neither a 2-set nor a (df + 1)-set.

Definition 1.2. Let F̃ ⊂ RN be an arbitrary closed set and µF̃ be a measure defined

on F̃ satisfying (1.4). The Besov space B̃p,p
γ (F̃) with respect to µF̃ is the space of

functions such that the following norm is finite:

‖u‖p
B̃p,pγ (F̃)

= ‖u‖p
Lp(F̃)

+

∫∫
|x−y|<1

|u(x)− u(y)|p

|x− y|γp−N(µF̃(B(x, |x− y|)))2
dµF̃(x) dµF̃(y). (1.5)

We define the measure µ̃ supported on ∂Q as

dµ̃ = χSdg + χΩ̃dL2.

The measure µ̃ satisfies condition (1.4) with d1 = 2 and d2 = df + 1.

We now state a trace theorem for functions in W s,p(Q). For the proof, we refer to

Theorem 1 in [28].

Proposition 1.3. Let 1
p
< s < 1. B̃p,p

s (∂Q) is the trace space of W s,p(Q) in the

following sense:

(i) γ0 is a continuous linear operator from W s,p(Q) to B̃p,p
s (∂Q);

(ii) there exists a continuous linear operator Ext from B̃p,p
s (∂Q) to W s,p(Q) such that

γ0 ◦ Ext is the identity operator in B̃p,p
s (∂Q).
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By (B̃p,p
s (∂Q))′ we denote the dual space of B̃p,p

s (∂Q), see [30].

From now on we suppose that
1

p
< s < 1.

1.3 Varying Hilbert spaces

In this subsection, we introduce the notion of convergence of varying Hilbert spaces.

We refer to [32] and [31] for definitions and proofs. The Hilbert spaces we consider are

real and separable.

Definition 1.4. A sequence of Hilbert spaces {Hn}n∈N converges to a Hilbert space H

if there exists a dense subspace C ⊂ H and a sequence {Zn}n∈N of linear operators

Zn : C ⊂ H → Hn such that

lim
n→∞

‖Znu‖Hn = ‖u‖H for any u ∈ C.

We set H = {∪nHn} ∪H and define strong and weak convergence in H. From now on

we assume that {Hn}n∈N, H and {Zn}n∈N are as in Definition 1.4.

Definition 1.5 (Strong convergence in H). A sequence of vectors {un}n∈N strongly

converges to u in H if un ∈ Hn, u ∈ H and there exists a sequence {ũm}m∈N ∈ C

tending to u in H such that

lim
m→∞

lim
n→∞

‖Znũm − un‖Hn = 0.

Definition 1.6 (Weak convergence in H). A sequence of vectors {un}n∈N weakly con-

verges to u in H if un ∈ Hn, u ∈ H and

(un, vn)Hn → (u, v)H

for every sequence {vn}n∈N strongly tending to v in H.

We remark that the strong convergence implies the weak convergence (see [32]).

Lemma 1.7. Let {un}n∈N be a sequence weakly converging to u in H. Then

sup
n
‖un‖Hn <∞, ‖u‖H ≤ lim

n→∞
‖un‖Hn .

Moreover, un → u strongly if and only if ‖u‖H = lim
n→∞
‖un‖Hn.

Let us recall some characterizations of the strong convergence of a sequence of vectors

{un}n∈N in H.
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Lemma 1.8. Let u ∈ H and let {un}n ∈ N be a sequence of vectors un ∈ Hn. Then

{un}n∈N strongly converges to u in H if and only if

(un, vn)Hn → (u, v)H

for every sequence {vn}n∈N with vn ∈ Hn weakly converging to a vector v in H.

Lemma 1.9. A sequence of vectors {un}n∈N with un ∈ Hn strongly converges to a

vector u in H if and only if

‖un‖Hn → ‖u‖H and

(un, Zn(ϕ))Hn → (u, ϕ)H for every ϕ ∈ C.

Lemma 1.10. Let {un}n∈N be a sequence with un ∈ Hn. If ‖un‖Hn is uniformly

bounded, then there exists a subsequence of {un}n∈N which weakly converges in H.

Lemma 1.11. For every u ∈ H there exists a sequence {un}n∈N, with un ∈ Hn, strongly

converging to u in H.

We now define the G-convergence of operators (see Definition 7.20 in [45]).

Definition 1.12. Let n ∈ N, An : Hn → 2Hn, A : H → 2H be multivalued operators.

We say that An G-converges to A, An
G−→ A, if for every [x, y] ∈ A (i.e. x ∈ D(A) and

y ∈ A(x)) there exists [xn, yn] ∈ An, n ∈ N such that xn → x and yn → y strongly in

H.

In the following we denote by L2(Q,m) the Lesbegue space with respect to the measure

m defined as

dm = dL3 + dg, (1.6)

and by the space L2(Q,mn) the Lebesgue space with respect to the measure mn given,

for every n ∈ N, by

dmn = χQndL3 + χSnδndσ, (1.7)

where δn is a given positive number and χQn and χSn denote the characteristic function

of Qn and Sn respectively.

Throughout the paper, we define H = L2(Q,m), where m is the measure defined in

(1.6), and the sequence {Hn}n∈N by Hn = {L2(Q) ∩ L2(Q,mn)}, where mn is the

measure defined in (1.7). We endow these spaces with the following norms:

‖u‖2
H = ‖u‖2

L2(Q) + ‖u‖2
L2(S), ‖u‖2

Hn = ‖u‖2
L2(Qn) + δn‖u‖2

L2(Sn).

Proposition 1.13. Let δn =
(

3
4

)n
. Then the sequence {Hn}n∈N converges in the sense

of Definition 1.4 to H.

For the proof, we refer to Proposition 5.13 in [34], where C and Zn in Definition 1.4

are respectively C(Q) and the identity operator on C(Q).
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2 Energy functionals and M-convergence

From now on, let p ≥ 2. Let b ∈ C(Q) be a strictly positive continuous function on Q.

We define the following energy functional for every u ∈ H:

Ep,s[u] :=


C3,p,s

2p

∫∫
Q×Q

|u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

1

p

∫
S

b|u|p dg if u ∈ D(Ep,s),

+∞ if u ∈ H \ D(Ep,s),

(2.1)

where the effective domain is

D(Ep,s) := {u ∈ W s,p(Q) : u = 0 on Ω̃},

and C3,p,s is a suitable positive constant depending on p and s, see Section 3.

Proposition 2.1. Ep,s is a weakly lower semicontinuous, proper and convex functional

in H. Moreover, its subdifferential ∂Ep,s is single-valued.

Proof. The functional Ep,s is clearly convex and proper. As to the weakly lower semi-

continuity, the thesis follows from the weak lower semicontinuity of the Lp(S)-norm

and by proceeding as in [47, Theorem 3.1], see also [35, Proposition 2.3]. Moreover,

from Proposition 2.40 in [5], ∂Ep,s is single-valued.

Similarly, for every n ∈ N and for every u ∈ Hn, we define

E(n)
p,s [u] :=



C3,p,s

2p

∫∫
Q×Q

χQn(x)χQn(y)
|u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

δn
p

∫
Sn

b|u|p dσ

if u ∈ D(E
(n)
p,s ),

+∞ if u ∈ Hn \ D(E
(n)
s ),

(2.2)

with effective domain

D(E(n)
p,s ) := {u ∈ W s,p(Q) : u = 0 on Ω̃n}.

By proceeding as in the proof of Proposition 2.1, the following result holds.

Proposition 2.2. E
(n)
p,s is a weakly lower semicontinuous, proper and convex functional

in Hn. Moreover, its subdifferential ∂E
(n)
p,s is single-valued.

We point out that Propositions 2.1 and 2.2 can be proved also for 1 < p < 2.
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We now introduce the notion of M-convergence. The definition of M-convergence of

quadratic energy forms is due to Mosco [42] for a fixed Hilbert space. This notion

has been adapted to the case of varying Hilbert spaces by Kuwae and Shioya (see

Definition 2.11 in [32]) and then extended to the case of proper convex functionals in

Banach spaces by Tölle (see Section 7.5, Definition 7.26 in [45]).

Definition 2.3. Let Hn be a sequence of Hilbert spaces converging to a Hilbert space

H. A sequence of proper and convex functionals
{
E

(n)
p,s

}
defined in Hn M-converges to

a functional Ep,s defined in H if the following conditions hold:

a) for every {vn} ∈ Hn weakly converging to u ∈ H in H

lim
n→∞

E(n)
p,s [vn] ≥ Ep,s[u];

b) for every u ∈ H there exists a sequence {wn}, with wn ∈ Hn strongly converging

to u in H, such that

lim
n→∞

E(n)
p,s [wn] ≤ Ep,s[u].

We now prove two preliminary results.

Proposition 2.4. If {vn}n∈N weakly converges to a vector u in H, then {vn}n∈N weakly

converges to u in L2(Q) and lim
n→∞

δn

∫
Sn

ϕvn dσ =

∫
S

ϕu dg for every ϕ ∈ C(Q).

For the proof see Proposition 6.6 in [34].

Proposition 2.5. Let vn ⇀ u in W s,p(Q) and b ∈ C(Q). Then

δn

∫
Sn

b|vn|p dσ →
∫
S

b|u|p dg.

Proof. We adapt the proof of Proposition 7.4 in [15] to our case. It holds that∣∣∣∣∣∣δn
∫
Sn

b |vn|p dσ −
∫
S

b |u|p dg

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣δn
∫
Sn

b |vn|p dσ − δn
∫
Sn

b |u|p dσ

∣∣∣∣∣∣
+

∣∣∣∣∣∣δn
∫
Sn

b |u|p dσ −
∫
S

b |u|p dg

∣∣∣∣∣∣ =: An +Bn.

For the term An, we have the following estimate:

An ≤ C δn‖b‖C(Q) ‖vn − u‖Lp(Sn)

(
‖vn‖Lp(Sn) + ‖u‖Lp(Sn)

)p−1

.
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Since vn weakly converges to u in W s,p(Q) by hypothesis, vn is equibounded in W s,p(Q);

hence vn strongly converges to u in W l,p(Q) for every 0 < l < s.

We now consider the extension of vn − u in W l,p(R3). From Theorem 3.6 in [15] it

follows that, if w ∈ W β̃,s(R3), for 1
p
< β̃ ≤ 3

p
,

‖w‖pLp(Sn) ≤
Cβ̃
δn
‖w‖p

W β̃,p(R3)
, (2.3)

where Cβ̃ is independent of n. Moreover, from Theorem 1 on page 103 in [29], it follows

that, for 0 < β̃ < 1, there exists a linear extension operator Ext : W β̃,p(Q)→ W β̃,p(R3)

such that

‖Extw‖p
W β̃,p(R3)

≤ C̄β̃‖w‖
p

W β̃,p(Q)
, (2.4)

with C̄β̃ depending on β̃. Therefore we get

δn ‖vn − u‖Lp(Sn) ≤ C ‖Ext(vn − u)‖W l,p(R3) ≤ C ‖vn − u‖W l,p(Q) ,

hence An → 0 when n→ +∞.

We now focus on Bn. Since u ∈ W s,p(Q), from [29, page 213] there exists a sequence

{wm} ∈ C(Q) ∩W s,p(Q) such that ‖wm − u‖W s,p(Q) → 0 as m→ +∞. We then get

Bn ≤

∣∣∣∣∣∣δn
∫
Sn

b |u|p dσ − δn
∫
Sn

b |wm|p dσ

∣∣∣∣∣∣+

∣∣∣∣∣∣δn
∫
Sn

b |wm|p dσ −
∫
S

b |wm|p dg

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
S

b |wm|p dg −
∫
S

b |u|p dg

∣∣∣∣∣∣ .
We proceed as above and we estimate the first term in the right-hand side with

‖u− wm‖W s,p(Q). We estimate the third term with the same quantity by Theorem

1, Chapter V in [29]. Hence, for every ε > 0 there exists mε ∈ N such that these two

terms are smaller than c ε. Since bwm is a continuous function, if we take m > mε, the

second term in the right-hand side goes to zero for n→ +∞ from Proposition 1.13.

We now prove the main Theorem.

Theorem 2.6. Let δn = (31−df )n =
(

3
4

)n
. Let Ep,s and E

(n)
p,s be defined as in (2.1) and

(2.2) respectively. Then E
(n)
p,s M-converges to the functional Ep,s.

Proof. We have to prove conditions a) and b) in Definition 2.3.

Proof of condition a). Let vn ∈ Hn be a weakly converging sequence in H to u ∈ H.

We can suppose vn ∈ D(E
(n)
p,s ) and

lim
n→∞

E(n)
p,s [vn] <∞,

12



otherwise the thesis follows trivially. Thus there exists a constant independent from n

such that

C3,p,s

2p

∫∫
Q×Q

χQn(x)χQn(y)
|vn(x)− vn(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

δn
p

∫
Sn

b|vn|p dσ ≤ C. (2.5)

In particular we have that ‖vn‖W s,p(Qn) < C. From Theorem 1 page 103 in [29], for

every n ∈ N there exists a bounded linear operator Ext : W s,p(Qn) → W s,p(R3) such

that

‖Ext vn‖W s,p(R3) ≤ CExt ‖vn‖W s,p(Qn) ≤ CExtC,

with CExt independent of n.

We define v̂n = Ext vn|Q. Then v̂n ∈ W s,p(Q) and ‖v̂n‖W s,p(Q) ≤ CExtC. Therefore,

there exists a subsequence (which we still denote by v̂n) weakly converging to some v̂

in W s,p(Q); moreover, v̂n strongly converges to v̂ in Lp(Q) (and hence also in L2(Q)

since p ≥ 2). From Proposition 2.4, vn weakly converges to u in L2(Q). We now prove

that v̂ = u in L2(Q), that is ∫
Q

(v̂ − u)ϕ dL3 = 0

for every ϕ ∈ L2(Q).

We first note that∫
Q

(v̂ − u)ϕ dL3 =

∫
Q

(v̂ − v̂n + v̂n − u)ϕ dL3

=

∫
Q

(v̂ − v̂n)ϕ dL3 +

∫
Qn

(vn − u)ϕ dL3 +

∫
Q\Qn

(v̂n − u)ϕ dL3.
(2.6)

We claim that each term on the right-hand side of (2.6) tends to zero as n → +∞.

From the strong convergence of v̂n to v̂ in L2(Q) and the weak convergence of vn to u

in L2(Q), we deduce our claim for the first two terms. As to the third, from Hölder

inequality we deduce that∫
Q\Qn

|(v̂n − u)ϕ| dL3 ≤ ‖ϕ‖L2(Q\Qn)(‖v̂n‖L2(Q) + ‖u‖L2(Q)) −−−−→
n→+∞

0

since |Q\Qn| → 0 as n→ +∞ and v̂n is equibounded in W s,p(Q) and in L2(Q). Hence

v̂n ⇀ u in W s,p(Q) and v̂n → u in Lp(Q).

We now prove that

lim
n→∞

∫∫
Q×Q

χQn(x)χQn(y)
|vn(x)− vn(y)|p

|x− y|sp+3
dL3(x)dL3(y) ≥

∫∫
Q×Q

|u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y).

(2.7)

13



We prove a preliminary fact. We recall that v̂n converges to u weakly in W s,p(Q) and

strongly in L2(Q).

We set

ṽn(x, y) := χQn(x)χQn(y)
v̂n(x)− v̂n(y)

|x− y|
sp+3
p

.

Since v̂n belongs to W s,p(Q) and is equibounded, ṽn belongs to Lp(Q × Q) and is

equibounded. Hence there exists a subsequence (still denoted by ṽn) which weakly

converges to ṽ in Lp(Q×Q). We claim that

ṽ(x, y) = ũ(x, y) :=
u(x)− u(y)

|x− y|
sp+3
p

a.e., (2.8)

where u is the weak limit of v̂n in W s,p(Q). We have to prove that∫∫
Q×Q

(ṽ(x, y)− ũ(x, y))ϕ(x, y) dL3(x)dL3(y) = 0 ∀ϕ ∈ Lp′(Q×Q), (2.9)

where p′ denotes the conjugate exponent of p. We remark that, since p ≥ 2, we have

p′ ≤ 2. Moreover, we point out that we can suppose that ϕ ∈ C(Q × Q); the thesis

will then follow by density.

We add and subtract the following two terms on the left-hand side of (2.9):∫∫
Q×Q

ṽn(x, y)ϕ(x, y) dL3(x)dL3(y) and

∫∫
Q×Q

v̂n(x)− v̂n(y)

|x− y|
sp+3
p

ϕ(x, y) dL3(x)dL3(y).

Hence the following holds:∫∫
Q×Q

(ṽ(x, y)− ũ(x, y))ϕ(x, y) dL3(x)dL3(y) =

∫∫
Q×Q

(ṽ − ṽn)ϕ(x, y) dL3(x)dL3(y)

+

∫∫
Q×Q

v̂n(x)− v̂n(y)

|x− y|
sp+3
p

(χQn(x)χQn(y)− χQ(x)χQ(y))ϕ(x, y) dL3(x)dL3(y)

+

∫∫
Q×Q

(
v̂n(x)− v̂n(y)

|x− y|
sp+3
p

− u(x)− u(y)

|x− y|
sp+3
p

)
ϕ(x, y) dL3(x)dL3(y) =: I

(n)
1 + I

(n)
2 + I

(n)
3 .

We study these three terms separately. As to I
(n)
1 , since ṽn weakly converges to ṽ in

Lp(Q×Q),

I
(n)
1 −−−−→

n→+∞
0.

As to I
(n)
2 , we point out that χQ(x)χQ(y)−χQn(x)χQn(y) = χ(Q×Q)\(Qn×Qn)(x, y), since

Qn ⊂ Q. Hence, from Hölder inequality it follows that

I
(n)
2 =

∫∫
(Q×Q)\(Qn×Qn)

v̂n(x)− v̂n(y)

|x− y|
sp+3
p

ϕ(x, y) dL3(x)dL3(y) ≤ ‖v̂n‖W s,p(Q)‖ϕ‖Lp′ ((Q×Q)\(Qn×Qn)),
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and the right-hand side tends to zero as n→ +∞ since v̂n is equibounded in W s,p(Q).

As to I
(n)
3 , we can rewrite it in the following way:

I
(n)
3 =

∫∫
Q×Q

(
v̂n(x)− v̂n(y)

|x− y|
sp+3
p

ϕ(x, y)− u(x)− u(y)

|x− y|
sp+3
p

ϕ(x, y)

)
dL3(x)dL3(y)

=

∫∫
Q×Q

v̂n(x)− u(x)

|x− y|
sp+3
p

ϕ(x, y) dL3(x)dL3(y)−
∫∫
Q×Q

v̂n(y)− u(y)

|x− y|
sp+3
p

ϕ(x, y) dL3(x)dL3(y)

=

∫
Q

(v̂n(x)− u(x))φ1(x) dL3(x)−
∫
Q

(v̂n(y)− u(y))φ2(y) dL3(y),

where

φ1(x) :=

∫
Q

ϕ(x, y)

|x− y|
sp+3
p

dL3(y), φ2(y) :=

∫
Q

ϕ(x, y)

|x− y|
sp+3
p

dL3(x).

We point out that both φ1 and φ2 belong to Lp
′
(Q). Hence, since v̂n converges strongly

to u in Lp(Q), from Hölder inequality also I
(n)
3 tends to zero as n→ +∞, thus proving

(2.9).

We remark that v̂n = vn on Qn. Hence we have that

χQn(x)χQn(y)
vn(x)− vn(y)

|x− y|
sp+3
p

⇀
u(x)− u(y)

|x− y|
sp+3
p

in Lp(Q×Q). From the lower semicontinuity of the norm, we get (2.7).

The thesis then follows from (2.7), Proposition 2.5 and liminf properties of the sum.

Proof of condition b). We prove that for every u ∈ H we can construct a sequence

{wn}n∈N strongly converging to u in H such that

Ep,s[u] ≥ lim
n→∞

E(n)
p,s [wn].

We suppose that u ∈ D(Ep,s), otherwise Ep,s[u] = +∞ and the thesis follows trivially

from Lemma 1.11.

We set wn := u|Qn . By proceeding as in the proof of condition (b) in Theorem 7.1 in

[14], we have that wn strongly converges to u in H.
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We now prove condition b) of Definition 2.3 for wn. We have that

lim
n→∞

E(n)
p,s [wn] = lim

n→∞

 C3,p,s

2p

∫∫
Qn×Qn

|wn(x)− wn(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

δn
p

∫
Sn

b|wn|p dσ


= lim

n→∞

 C3,p,s

2p

∫∫
Qn×Qn

|u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

δn
p

∫
Sn

b|u|p dσ


=
C3,p,s

2p

∫∫
Q×Q

|u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

1

p

∫
S

b|u|p dg = Ep,s[u],

where the second-last equality follows from Proposition 2.5 and from the properties of

the pre-fractal domains Qn, see Section 1.1. This concludes the proof.

The M-convergence of the energy functionals is equivalent to the G-convergence of the

associated subdifferentials, as stated in the following result.

Theorem 2.7. E
(n)
p,s M-converges to Ep,s in H if and only if ∂E

(n)
p,s G-converges to

∂Ep,s.

For the proof see Theorem 7.46 in [45].

3 The regional fractional p-Laplacian and the

Green formula

The energy functionals introduced in the previous section naturally arise when consid-

ering Robin BVPs for the regional fractional p-Laplacian. In order to consider a suitable

weak formulation, a key step is to suitably generalize the notion of p-fractional normal

derivative to irregular sets (Lipschitz and fractals) via Green formulas. We remark that

the fractional normal derivative for smooth domains has been introduced in [24, 25]

for the case p = 2 and it has then been extended to the case p ≥ 2 in [49].

We first recall the definition of the regional fractional p-Laplacian. We refer to [49]

and the references listed in.

Let s ∈ (0, 1) and p > 1. For G ⊆ RN , we define the space

Lp−1
s (G) :=

u : G → R measurable :

∫
G

|u(x)|p−1

(1 + |x|)N+sp
dLN(x) <∞

 .
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The regional fractional Laplacian (−∆p)
s
G is defined as follows, for x ∈ G:

(−∆p)
s
Gu(x) = CN,p,sP.V.

∫
G

|u(x)− u(y)|p−2u(x)− u(y)

|x− y|N+sp
dLN(y)

= CN,p,s lim
ε→0+

∫
{y∈G : |x−y|>ε}

|u(x)− u(y)|p−2u(x)− u(y)

|x− y|N+sp
dLN(y),

(3.1)

provided that the limit exists, for every function u ∈ Lp−1
s (G). The positive constant

CN,p,s is defined as follows:

CN,p,s =
s22sΓ(ps+p+N−2

2
)

π
N
2 Γ(1− s)

,

where Γ is the Euler function.

Following Section 3 in [14], we prove a p-fractional Green formula for domains with

fractal boundary, which, in turn, allows us to define the p-fractional normal derivative

on non-smooth domains. A key tool is the use of a limit argument since the fractal

domain Q can be approximated by the increasing sequence of pre-fractal domains Qn.

We define the space

V ((−∆p)
s
Q, Q) := {u ∈ W s,p(Q) : (−∆p)

s
Qu ∈ Lp

′
(Q) in the sense of distributions and u = 0 on Ω̃},

which is a Banach space equipped with the norm

‖u‖V ((−∆p)sQ,Q) := ‖u‖W s,p(Q) + ‖(−∆p)
s
Qu‖Lp′ (Q).

Analogously, for every n ∈ N, we define the space V ((−∆p)
s
Qn
, Qn) on Qn as follows:

V ((−∆p)
s
Qn , Qn) := {u ∈ W s,p(Q) : (−∆p)

s
Qnu ∈ L

p′(Qn) in the sense of distributions and u = 0 on Ω̃n}.

We introduce also the space

W
s− 1

p
,p

0,0 (Sn) := {u ∈ Lp(Sn) : ∃ v ∈ W s,p(Q) s.t. v = 0 on Ω̃ and γ0v = u on Sn}.

We now define the p-fractional normal derivative on Lipschitz domains.

Definition 3.1. Let n ∈ N and u ∈ V ((−∆p)
s
Qn
, Qn). We say that u has a weak

p-fractional normal derivative in (W
s− 1

p
,p

0,0 (Sn))′ if there exists g ∈ (W
s− 1

p
,p

0,0 (Sn))′ such

that

〈g, v〉
(W

s− 1
p ,p

0,0 (Sn))′,W
s− 1

p ,p

0,0 (Sn)
= −

∫
Qn

(−∆p)
s
Qnu v dL3 (3.2)

+
C3,p,s

2

∫∫
Qn×Qn

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y)
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for every v ∈ W s,p(Qn). In this case, g is uniquely determined and we call

Cp,sN p′(1−s)
p u := g the weak p-fractional normal derivative of u, where

Cp,s :=
(p− 1)C1,p,s

(sp− (p− 2))(sp− (p− 2)− 1)

∞∫
0

|t− 1|(p−2)+1−sp − (t ∨ 1)p−sp−1

tp−sp
dt.

We point out that, when s → 1− in (3.2), we recover the quasi-linear Green formula

for Lipschitz domains [10].

We introduce the space

Bp,p
η,0(S) := {w ∈ Lp(S) : ∃ v ∈ W s,p(Q) s.t. v = 0 on Ω̃ and γ0v = w on S},

where η := s− 2−df
p

> 0.

Theorem 3.2 (Fractional Green formula). There exists a bounded linear operator

N p′(1−s)
p from V ((−∆p)

s
Q, Q) to (Bp,p

η,0(S))′.

The following generalized Green formula holds for all u ∈ V ((−∆p)
s
Q, Q) and v ∈

W s,p(Q):

Cp,s

〈
N p′(1−s)
p u, v

〉
(Bp,pη,0(S))′,Bp,pη,0(S)

= −
∫
Q

(−∆p)
s
Qu v dL3

+
C3,p,s

2

∫∫
Q×Q

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y).

(3.3)

Proof. For u ∈ V ((−∆p)
s
Q, Q) and v ∈ W s,p(Q), we define

〈l(u), v〉 := −
∫
Q

(−∆p)
s
Qu v dL3 +

C3,p,s

2
(u, v)p,s

From Hölder inequality and trace theorems, we get

| 〈l(u), v〉| ≤ ‖(−∆p)
s
Qu‖Lp′ (Q)‖v‖Lp(Q) +

C3,p,s

2
‖u‖W s,p(Q)‖v‖W s,p(Q)

≤ C ‖u‖V ((−∆p)sQ,Q)‖v‖W s,p(Q) ≤ C ‖u‖V ((−∆p)sQ,Q)‖v‖Bp,pη,0(S).

This shows in particular that the operator is independent from the choice of v and it

is an element of the dual space of Bp,p
η,0(S).

From (3.2) we have that

Cp,s

〈
N p′(1−s)
p u, v

〉
(W

s− 1
p ,p

0,0 (Sn))′,W
s− 1

p ,p

0,0 (Sn)
= −

∫
Q

χQn(−∆p)
s
Qu v dL3

+
C3,p,s

2

∫∫
Q×Q

χQn(x)χQn(y)|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y).
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From the dominated convergence theorem, we have

lim
n→∞

Cp,s

〈
N p′(1−s)
p u, v

〉
(W

s− 1
p ,p

0,0 (Sn))′,W
s− 1

p ,p

0,0 (Sn)

= lim
n→∞

−∫
Qn

(−∆p)
s
Qu v dL3 +

C3,p,s

2

∫∫
Qn×Qn

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y)


= −

∫
Q

(−∆p)
s
Qu v dL3 +

C3,p,s

2
(u, v)p,s = 〈l(u), v〉

for every u ∈ V ((−∆p)
s
Q, Q) and v ∈ W s,p(Q). Hence, we define the fractional normal

derivative on Q as

〈Cp,sN p′(1−s)
p u, v〉(Bp,pη,0(S))′,Bp,pη,0(S) := −

∫
Q

(−∆p)
s
Qu v dL3 +

C3,p,s

2
(u, v)p,s.

Remark 3.3. We note that p′(1− s) can be recast as 2− β, where β = ps−1
p−1

+ 1, thus

recovering the usual notation for the p-fractional normal derivative.

Moreover, we recover the Green formula proved in [38] for fractal domains when s→ 1−

in (3.3).

Let u ∈ V (−∆p, Q) := {u ∈ W 1,p(Q) : −∆pu ∈ Lp
′
(Q) in the sense of distributions}

and v ∈ W 1,p(Q). It holds that

lim
s→1−

∫
Q

(−∆p)
s
Qu v dL3 =

∫
Q

|∇u|p−2∇u∇v dL3.

As first step, we take v = u and u ∈ C∞(Q). In particular then u ∈ C∞(Qn) for every

n and N p′(1−s)
p u = 0 on ∂Qn pointwise (see [49]). From Definition 3.1 we have

lim
s→1−

∫
Q

χQnu (−∆p)
s
Qu dL3 = lim

s→1−

(1− s)C3,p,s

2(1− s)

∫∫
Qn×Qn

|u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y).

(3.4)

From [6, 7] and the properties of the Euler function, the limit in the right-hand side of

(3.4) is equal to

∫
Qn

|∇u|p dL3. Then passing to the limit as n→ +∞ we get

lim
n→+∞

lim
s→1−

∫
Q

χQnu (−∆p)
s
Qu dL3 = lim

n→+∞

∫
Qn

|∇u|p dL3 =

∫
Q

|∇u|p dL3.

The claim then follows by density arguments.
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4 The evolution problems

4.1 Abstract Cauchy problems

Let T be a fixed positive number. We now consider the abstract homogeneous Cauchy

problems

(P )

{
∂u
∂t

+Asu 3 0, t ∈ [0, T ]

u(0) = u0,

and, for every n ∈ N fixed,

(Pn)

{
∂un
∂t

+A(n)
s un 3 0, t ∈ [0, T ]

un(0) = u
(n)
0 ,

where As and A(n)
s are the subdifferentials of Ep,s and E

(n)
p,s respectively, and u0 and

u
(n)
0 are given functions.

According to [4, Section 2.1, chapter II], we give the following definition.

Definition 4.1. A function u : [0, T ] → H is a strong solution of problem (P ) if u ∈
C([0, T ];H), u(t) is differentiable a.e. in (0, T ), u(t) ∈ D(−As) a.e and ∂u

∂t
+Asu 3 0

for a.e. t ∈ [0, T ].

Similarly, an analogous definition of strong solution un of problem (Pn) holds with

suitable changes.

From Theorem 1 and Remark 2 in [8] (see also [4]) we have the following result.

Theorem 4.2. Let ϕ : H → (−∞,+∞] be a proper, convex, lower semicontinuous

functional on a real Hilbert space H, with effective domain D(ϕ). Then the subdiffer-

ential ∂ϕ is a maximal monotone m-accretive operator. Moreover, D(ϕ) = D(∂ϕ) and

−∂ϕ generates a nonlinear C0-semigroup {T (t)}t≥0 on D(ϕ) in the following sense: for

each u0 ∈ D(ϕ), the function u := T (·)u0 is the unique strong solution of the problem
u ∈ C(R+;H) ∩W 1,∞

loc ((0,∞);H) and u(t) ∈ D(ϕ) a.e.,
∂u

∂t
+ ∂ϕ(u) 3 0 a.e. on R+,

u(0, x) = u0(x).

In addition, −∂ϕ generates a nonlinear semigroup {T̃ (t)}t≥0 on H where, for every

t ≥ 0, T̃ (t) is the composition of the semigroup T (t) on D(ϕ) with the projection on

the convex set D(ϕ).

From Proposition 2.1, Proposition 2.2 and Theorem 4.2, we have that the subdifferen-

tials ∂Ep,s and ∂E
(n)
p,s are maximal, monotone and m-accretive operators on H and Hn

respectively.
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We denote by Tp,s(t) and T
(n)
p,s (t) the nonlinear semigroups generated by −∂Ep,s and

−∂E(n)
p,s respectively.

Proposition 4.3. Tp,s(t) and T
(n)
p,s (t) are strongly continuous and contractive semi-

groups on H and Hn respectively.

For the proof see Proposition 3.2, page 176 in [44].

Actually, we can prove that the semigroups Tp,s(t) and T
(n)
p,s (t) enjoy “stronger” prop-

erties. We recall some definitions (see [11] for details).

Definition 4.4. Let X be a locally compact metric space and µ̃ be a Radon measure

on X. Let {T (t)}t≥0 be a strongly continuous semigroup on L2(X, µ̃). The semigroup

is order-preserving if, for every u, v ∈ L2(X, µ̃) such that u ≤ v,

T (t)u ≤ T (t)v ∀ t ≥ 0.

The semigroup is non-expansive on Lq(X, µ̃) if for every t ≥ 0

‖T (t)u− T (t)v‖L∞(X,µ̃) ≤ ‖u− v‖L∞(X,µ̃) ∀u ∈ L2(X, µ̃) ∩ Lq(X, µ̃).

The semigroup is Markovian if it is order-preserving and non-expansive on L∞(X, µ̃).

Theorem 4.5. The semigroup {Tp,s(t)}t≥0 is Markovian on H, i.e. it is order-

preserving and non-expansive on L∞(Ω,m). The semigroup {T (n)
p,s (t)}t≥0 is Markovian

on Hn, i.e. it is order-preserving and non-expansive on L∞(Ω,mn).

Proof. By proceeding as in the proof of Theorem 3.1 in [35], see also [47, Theorem 3.4],

the thesis follows.

From Theorem 2.1, chapter IV in [4] the following existence and uniqueness results for

the strong solutions of problems (P ) and (Pn) follow.

Theorem 4.6. If u0 ∈ D(−As), then problem (P ) has a unique strong solution u ∈
C([0, T ];H) defined as u = Tp,s(·)u0 such that u ∈ W 1,2((δ, T );H) for every δ ∈ (0, T ).

Moreover u ∈ D(−As) a.e. for t ∈ (0, T ),
√
t∂u
∂t
∈ L2(0, T ;H) and Ep,s[u] ∈ L1(0, T ).

Theorem 4.7. If u
(n)
0 ∈ D(−A(n)

s ), then for every n ∈ N problem (Pn) has a

unique strong solution un ∈ C([0, T ];Hn) defined as un = T
(n)
p,s (·)u(n)

0 such that

un ∈ W 1,2((δ, T );Hn) for every δ ∈ (0, T ). Moreover un ∈ D(−A(n)
s ) a.e. for t ∈ (0, T ),√

t∂un
∂t
∈ L2(0, T ;Hn) and E

(n)
p,s [un] ∈ L1(0, T ).
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4.2 Strong formulations

We now prove that the strong solutions of problems (P ) and (Pn) actually solve prob-

lems (P̃ ) and (P̃n). To this aim, a characterization of the subdifferentials of Ep,s and

E
(n)
p,s is a starting point.

We first consider the fractal case and provide a characterization of As. We recall that

Ω̃ = (Ω× {0}) ∪ (Ω× {1}).

Theorem 4.8. Let u belong to D(Ep,s) for a.e. t ∈ (0, T ], and let f be in H. Then

f ∈ ∂Ep,s[u] if and only if u solves the following problem:

(P̄ )


(−∆p)

s
Qu = f in Lp

′
(Q),

Cp,s

〈
N p′(1−s)
p u, v

〉
(Bp,pη,0(S))′,Bp,pη,0(S)

+ 〈b|u|p−2u, v〉Lp′ (S),Lp(S) = 〈f, v〉L2(S),L2(S) ∀ v ∈ Bp,p
η,0(S),

u = 0 in W s− 1
p
,p(Ω̃).

Proof. Let f ∈ ∂Ep,s, i.e. Ep,s[ψ] − Ep,s[u] ≥ (f, ψ − u)H for every ψ ∈ D(Ep,s). This

means that

∫
Q

f(ψ − u) dL3 +

∫
S

f(ψ − u) dg ≤

C3,p,s

2p

∫∫
Q×Q

|ψ(x)− ψ(y)|p − |u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

1

p

∫
S

b(|ψ|p − |u|p) dg.

(4.1)

By choosing ψ = u+ tv, with v ∈ D(Ep,s) and 0 < t ≤ 1 in (4.1), we obtain

t

∫
Q

f v dL3 + t

∫
S

f v dg ≤

C3,p,s

2p

∫∫
Q×Q

|(u+ tv)(x)− (u+ tv)(y)|p − |u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y) +

1

p

∫
S

b(|u+ tv|p − |u|p) dg.

(4.2)

If we take v ∈ D(Q), from (4.2) we get∫
Q

f v dL3 ≤
C3,p,s

2p

∫∫
Q×Q

1

t

|(u+ tv)(x)− (u+ tv)(y)|p − |u(x)− u(y)|p

|x− y|sp+3
dL3(x)dL3(y).
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By passing to the limit for t→ 0+, we get∫
Q

f v dL3 ≤
C3,p,s

2

∫∫
Q×Q

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y).

By taking −v in (4.2) we obtain the opposite inequality, and hence we get∫
Q

f v dL3 =
C3,p,s

2

∫∫
Q×Q

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y).

Since v ∈ D(Q) and p′ ≤ 2 (since p ≥ 2), it turns out that in particular f ∈ Lp′(Q).

Hence, the p-fractional Green formula for fractal domains given by Theorem 3.2 yields

that

(−∆p)
s
Qu = f in Lp

′
(Q) (4.3)

(and in particular in L2(Q)).

We go back to (4.2). Dividing by t > 0 and passing to the limit for t→ 0+, we get∫
Q

f v dL3 +

∫
S

f v dg ≤

C3,p,s

2

∫∫
Q×Q

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y) +

∫
S

b|u|p−2u v dg.

As above, by taking −v we obtain the opposite inequality, hence we get the equality.

Then, by Theorem 3.2 and (4.3) we have∫
S

fv dg = Cp,s

〈
N p′(1−s)
p u, v

〉
(Bp,pη,0(S))′,Bp,pη,0(S)

+

∫
S

b|u|p−2u v dg. (4.4)

Hence (4.4) holds in (Bp,p
η,0(S))′ and since u ∈ D(Ep,s) we have u = 0 in W s− 1

p
,p(Ω̃).

We prove the converse. Let then u ∈ D(Ep,s) be the weak solution of problem (P̄ ). We

have then to prove that Ep,s[v]−Ep,s[u] ≥ (f, v− u)H for every v ∈ D(Ep,s). By using

the inequality
1

p
(|a|p − |b|p) ≥ |b|p−2b(a− b)

one gets

Ep,s[v]− Ep,s[u] ≥ C3,p,s

2

∫∫
Q×Q

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+3
dL3(x)dL3(y)

+

∫
S

b|u|p−2u v dg − C3,p,s

2

∫∫
Q×Q

|u(x)− (u)(y)|p

|x− y|sp+3
dL3(x)dL3(y)−

∫
S

b|u|p dg.

(4.5)
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Since u is the weak solution of (P̄ ), by using as test functions v and u respectively we

get

Ep,s[v]− Ep,s[u] ≥
∫
Q

f v dL3 +

∫
S

f v dg −
∫
Q

f u dL3 −
∫
S

f u dg = (f, v)H − (f, u)H ,

i.e. the thesis.

Theorem 4.8 implies that the unique strong solution u of the abstract Cauchy problem

(P ) solves the following Robin problem ˜(P ) on Q for a.e. t ∈ (0, T ] in the following

weak sense:

(P̃ )



∂u
∂t

(t, x) + (−∆p)
s
Qu(t, x) = 0 for a.e. x ∈ Q,〈

∂u
∂t
, v
〉
L2(S),L2(S)

+ Cp,s

〈
N p′(1−s)
p u, v

〉
(Bp,pη,0(S))′,Bp,pη,0(S)

+ 〈b|u|p−2u, v〉Lp′ (S),Lp(S) = 0 ∀ v ∈ Bp,p
η,0(S),

u(t, x) = 0 in W s− 1
p
,p(Ω̃),

u(0, x) = u0(x) in H,

where η := s− 2−df
p

> 0.

We proceed similarly in the pre-fractal case. We first provide a characterization of

A(n)
s . We recall that Ω̃n = (Ωn × {0}) ∪ (Ωn × {1}).

Theorem 4.9. For every n ∈ N fixed, let δn =
(

3
4

)n
, let u belong to D(E

(n)
p,s ) for a.e.

t ∈ (0, T ], and let f be in Hn. Then f ∈ ∂E(n)
p,s [u] if and only if u solves the following

problem:

(P̄n)



(−∆p)
s
Qn
u = f in Lp

′
(Qn),

Cp,s

〈
N p′(1−s)
p u, v

〉
(W

s− 1
p ,p

0,0 (Sn))′,W
s− 1

p ,p

0,0 (Sn)
+ δn 〈b|u|p−2u, v〉Lp′ (Sn),Lp(Sn)

= δn 〈f, v〉L2(Sn),L2(Sn) ∀ v ∈ W
s− 1

p
,p

0,0 (Sn),

u = 0 in W s− 1
p
,p(Ω̃n).

From Theorem 4.9, it follows that the unique strong solution un of the abstract Cauchy

problem (Pn) solves (for each n ∈ N) the following Robin problem ˜(Pn) on Qn for a.e.
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t ∈ (0, T ] in the following weak sense:

(P̃n)



∂un
∂t

(t, x) + (−∆p)
s
Qn
un(t, x) = 0 for a.e. x ∈ Qn,

δn
〈
∂un
∂t
, v
〉
L2(Sn),L2(Sn)

+ Cp,s

〈
N p′(1−s)
p un, v

〉
(W

s− 1
p ,p

0,0 (Sn))′,W
s− 1

p ,p

0,0 (Sn)

+δn 〈b|un|p−2un, v〉Lp′ (Sn),Lp(Sn) = 0 ∀ v ∈ W
s− 1

p
,p

0,0 (Sn),

un(t, x) = 0 in W s− 1
p
,p(Ω̃n),

un(0, x) = u
(n)
0 (x) in Hn.

4.3 Convergence results

We now aim to prove the convergence of the pre-fractal solutions to the fractal one. Let

m and mn be the measures defined in (1.6) and (1.7) respectively. We denote by dt the

one-dimensional Lebesgue measure on [0, T ]. We observe that L2([0, T ]×Q, dt×dmn)

is isomorphic to L2([0, T ];Hn) and L2([0, T ]×Q, dt×dm) is isomorphic to L2([0, T ];H).

If we define

Kn = L2([0, T ];Hn) for every n ∈ N and K = L2([0, T ];H),

Kn converges to K in the sense of Definition 1.4, where the set C is now C([0, T ]×Q)

and Zn is the identity operator on C.

We denote by K = {∪nKn}∪K. We define strong and weak convergence in K according

to Definition 1.5 and 1.6 respectively. In the following we use either the characterization

of strong convergence in K given in Lemma 1.8 or the one given in Lemma 1.9. For

the sake of clarity, we recall them.

Proposition 4.10. A sequence of vectors {un}n∈N strongly converges to u in K if one

of the following holds:

a)



T∫
0

‖un(t)‖2
Hn dt −−−−→

n→+∞

T∫
0

‖u(t)‖2
H dt

T∫
0

(un(t), ϕ(t))Hn dt −−−−→
n→+∞

T∫
0

(u(t), ϕ(t))H dt

(4.6)

for every ϕ ∈ C([0, T ]×Q);

b)

T∫
0

(un(t), vn(t))Hn dt −−−−→
n→+∞

T∫
0

(u(t), v(t))H dt (4.7)

for every sequence {vn}n∈N strongly converging to v in K.
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Remark 4.11. By proceeding as in Proposition 2.4, it follows that the weak convergence

in K implies the weak convergence in L2([0, T ]×Q).

Theorem 4.12. Let Hn, H, E
(n)
p,s , Ep,s and δn be as in Theorem 2.6. Let T

(n)
p,s (t),

Tp,s(t), u
(n)
0 and u0 be as in Theorems 4.6 and 4.7. If u

(n)
0 → u0 strongly in H and

there exists a constant C such that

‖u(n)
0 ‖D(A

(n)
s )

< C for every n ∈ N, (4.8)

then

i) {un(t)} converges to u(t) strongly in H for every fixed t ∈ [0, T ];

ii) {un} converges to u in K.

Proof. The convergence in H follows from Theorem 2.6, Theorem 2.7 and Theorem

7.24 in [45].

We now prove ii). From Proposition 4.10 a), this amounts to prove

‖un‖Kn → ‖u‖K (4.9)

and

(un, φ)Kn → (u, φ)K ∀φ ∈ C([0, T ]×Q). (4.10)

Since T
(n)
p,s is a contraction semigroup, it follows that for a.e. t

‖un‖Hn = ‖T (n)
p,s (t)u

(n)
0 ‖Hn ≤ ‖u

(n)
0 ‖D(−A(n)

s )
< C, (4.11)

where C is independent from n. Thus the sequence {un} is equibounded for t ∈ [0, T ],

and from i) we get

‖un(t)‖Hn → ‖u(t)‖H .

Hence, from the dominated convergence Theorem (4.9) holds.

We come to (4.10). From i), it follows in particular that for every t ∈ [0, T ]

(un(t), φ(t))Hn → (u(t), φ(t))H ∀φ ∈ C([0, T ]×Q).

Since

|(un(t), φ(t))Hn| ≤ C ‖φ‖C([0,T ]×Q) ,

again from the dominated convergence Theorem we deduce

(un, φ)Kn −−−−→
n→+∞

(u, φ)K ,

thus proving (4.10).
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5 Conclusions and remarks

There are some differences between the linear case p = 2 [14] and the nonlinear case

p > 2 investigated in this paper.

As in [14, Sections 5 and 6], existence and uniqueness results for the strong solutions

of problems (P ) and (Pn) (and consequently of the strong problems (P̃ ) and (P̃n)) can

be proved also in the non-homogeneous case. When p > 2, we have neither an explicit

representation formula for the solutions of the abstract Cauchy problems nor a priori

estimates for the solutions. Thus, we cannot use the techniques of Theorem 8.1 in [14]

to study the asymptotic behavior of the solutions for the non-homogeneous problems.

Moreover, in Theorem 4.12 we studied the convergence of the pre-fractal solution un

to the fractal solution u in the homogeneous case. Further convergence results, such

as the convergence of time derivatives and/or of the p-fractional normal derivatives as

in [14, Section 8], are still an open problem since the proves deeply rely on a priori

estimates for the strong solutions u and un.

We now stress the fact that, as in the linear case [14, Section 3], the p-fractional Green

formula, proved in Theorem 3.2, actually holds for more general extension domains

having as boundary either a d-set or an arbitrary closed set (see Definition 1.2). More-

over, it also holds for more general fractal geometries such as fractal mixture cylinders

in R3 [33].

We also point out that our problem is a prototype. The results of the present paper

can be extended to more general nonlinear fractional operators; this is object of an

ongoing research.
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plicata, 120 (1979), 35–111.

[4] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Translated from

the Romanian, Noordhoff International Publishing, Leiden, 1976.

27



[5] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, Fourth edition, Springer

Monographs in Mathematics, Springer, Dordrecht, 2012.
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