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Abstract4

We consider a parabolic transmission problem, involving nonlinear fractional op-5

erators of different order, across a fractal interface Σ. The transmission condition6

is of Robin type and it involves the jump of the p-fractional normal derivatives7

on the irregular interface. After proving existence and uniqueness results for the8

weak solution of the problem at hand, via a semigroup approach, we investigate9

the regularity of the nonlinear fractional semigroup.10
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Introduction16

Aim of this paper is to study a parabolic nonlocal transmission problem of the form17
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(P̃ )



∂u1

∂t
(t, x) + (−∆p)

β
Ω1
u1(t, x) = f1(t, x) in (0, T ]× Ω1,

∂u2

∂t
(t, x) + (−∆p)

α
Ω2
u2(t, x) = f2(t, x) in (0, T ]× Ω2,

u1 = wu2 on (0, T ]× Σ,

Nu+ b|u2|p−2u2 = 0 on (0, T ]× Σ,

N p′(1−α)
p u2 = 0 on (0, T ]× ∂Ω,

u1(0, x) = u01(x) in Ω1,

u2(0, x) = u02(x) in Ω2,

where Ω ⊂ R2 is an open bounded polygonal domain and Σ is a fractal interface of1

Koch type which divides Ω in two subdomains Ω1 and Ω2 (see Figure 1). Here p > 1,2

(−∆p)
β
Ω1

and (−∆p)
α
Ω2

are the regional fractional p-Laplacians on Ω1 and Ω2 of order3

β and α respectively (see Section 2) and α, β ∈ (0, 1) such that α ≥ β. N p′(1−α)
p is the4

(α, p)-fractional normal derivative on ∂Ω and Nu denotes the jump of the p-fractional5

normal derivatives, to be suitably defined (see Section 3). w, b, f1, f2, u
0
1 and u02 are6

given functions.7

There is a huge literature on fractional operators. This is due to the fact that they8

describe mathematically many physical phenomena which exhibit deviations from stan-9

dard diffusion. This is the so-called anomalous diffusion, and it is an important topic10

not only in physics, but also in finance and probability (see [1, 22, 33, 35]).11

This diffusion is present in several models appearing in the literature. Among the12

others, we mention the fractional Brownian motion, the continuous time random walk,13

the Lévy flight as well as random walk models based on evolution equations of single14

and distributed fractional order in time and/or space [13, 19, 32, 35, 37].15

The study of transmission problems involving linear fractional diffusion operators has16

been considered for the first time in the case of a Lipschitz interface in [18] (see also17

[16, 17]). As to the case of irregular interfaces, the first examples in the literature of18

transmission problems across fractal interfaces for linear second order operators with19

second order transmission conditions can be found in [27, 31, 30]. From the physical20

point of view, these latter problems describe, in electrostatics and magnetostatics, the21

heat flow across highly conductive thin layers (see [34] and the references listed in).22

Further examples can be found in [11].23

As to the case of fractional operators in irregular domains, Robin-Venttsel’-type bound-24

ary value problems for the regional fractional p-Laplacian in extension domains with25

highly irregular boundary have been recently investigated in [8], and their approxi-26
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mation in terms of smoother problems has been studied in [10] (see [9] for the linear1

case).2

In the present paper, we study problem (P̃ ), formally stated above, by a semigroup3

approach. We firstly prove existence and uniqueness of the “strong” solution of the4

associated abstract Cauchy problem (see Theorem 3.3), then we prove that such strong5

solution actually solves problem (P̃ ) in a suitable weak sense (see Theorem 3.6). A key6

issue is to prove that the jump condition on Σ is satisfied. These results are achieved by7

a suitable characterization of the subdifferential of the nonlinear functional associated8

to the problem and by a p-fractional Green formula for irregular domains (see Theorem9

2.2).10

Finally, in Theorem 4.7 we prove the ultracontractivity of the associated semigroup.11

This result deeply relies on a fractional logarithmic Sobolev inequality adapted to the12

present framework (see Proposition 4.1).13

It turns out that, under our hypotheses on α and β, the dominant diffusion is the one14

in Ω1. The case when α ≤ β is also investigated in Section 5.15

The paper is organized as follows.16

In Section 1 we introduce the domain Ω and the functional setting and we recall some17

known trace and embedding results.18

In Section 2 we recall the definition of regional fractional p-Laplacian and we state a19

p-fractional Green formula for irregular domains.20

In Section 3 we prove via semigroup theory that problem (P̃ ) admits a unique solution21

in a suitable weak sense.22

In Section 4 we prove that the semigroup associated to our problem is ultracontractive.23

In Section 5 we consider the case α ≤ β and we discuss some open problems.24

1 Preliminaries25

1.1 Geometry and functional spaces26

Given P, P0 ∈ RN , in this paper we denote by |P − P0| the Euclidean distance in RN
27

and by B(P0, r) = {P ∈ RN : |P − P0| < r}, for r > 0, the Euclidean ball. We also28

denote by LN the N -dimensional Lebesgue measure.29

We denote by Σ the Koch snowflake, i.e. the union of three co-planar Koch curves K1,30

K2 andK3 (see [14]). We assume that the junction points A1, A3 and A5 are the vertices31

of a regular triangle with unit side length, i.e. |A1 −A3| = |A1 −A5| = |A3 −A5| = 1.32

For i = 1, 2, 3, Ki is the uniquely determined self-similar set with respect to a family Ψi
33

of four suitable contractions ψ
(i)
1 , . . . , ψ

(i)
4 , with respect to the same ratio 1

3
(see [15]).34

The Hausdorff dimension of the Koch snowflake is given by df = ln 4
ln 3

. One can define,35
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in a natural way, a finite Borel measure µ supported on K by1

µΣ := µ1 + µ2 + µ3, (1.1)

where µi denotes the normalized df -dimensional Hausdorff measure restricted to Ki,2

for i = 1, 2, 3.3

In this paper we consider a bounded open polygonal domain Ω ⊂ R2 (for simplicity,4

one can take a rectangle) which is divided in two subdomains Ω1 and Ω2 by the Koch5

snowflake Σ. More precisely, Ω = Ω1 ∪ Ω2, Σ = Ω1 ∩ Ω2, ∂Ω1 = Σ and ∂Ω2 = Γ ∪ Σ6

(see Figure 1).7

Figure 1: The domain Ω.

Let G (resp. S) be an open (resp. closed) set of RN . By Lp(G), for p > 1, we denote

the Lebesgue space with respect to the Lebesgue measure LN , which will be left to

the context whenever that does not create ambiguity. By Lp(∂G, µ) we denote the

Lebesgue space on ∂G with respect to a Hausdorff measure µ supported on ∂G. By

D(G) we denote the space of infinitely differentiable functions with compact support

in G. By C(S) we denote the space of continuous functions on S.
By W s,p(G), where 0 < s < 1, we denote the fractional Sobolev space of exponent s.

We point out that it is a Banach space if we endow it with the following norm:

∥u∥pW s,p(G) = ∥u∥pLp(G) +

∫∫
G×G

|u(x)− u(y)|p

|x− y|N+sp
dLN(x)dLN(y).
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Moreover, we denote by |u|W s,p(G) the seminorm associated to ∥u∥W s,p(G) and, for u, v ∈1

W s,p(G), we set2

(u, v)s,p :=

∫∫
G×G

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
dLN(x)dLN(y).

In the following we will denote by |A| the Lebesgue measure of a measurable subset3

A ⊂ RN . For f in W s,p(G), we define the trace operator γ0 as4

γ0f(x) := lim
r→0

1

|B(x, r) ∩ G|

∫
B(x,r)∩G

f(y) dLN(y) (1.2)

at every point x ∈ G where the limit exists. The limit (1.2) exists at quasi every x ∈ G5

with respect to the (s, p)-capacity (see [2], Definition 2.2.4 and Theorem 6.2.1 page6

159). In the sequel we will omit the trace symbol and the interpretation will be left to7

the context.8

We recall two trace theorems, one for polygonal domains and one for irregular domains.9

We first state the trace theorem in the polygonal case. For the proof we refer to [6].10

Proposition 1.1. Let 1
p
< s < 1 and let G be a polygonal domain. Then W s− 1

p
,p(∂G)11

is the trace space to ∂G of W s,p(G) in the following sense:12

(i) γ0 is a continuous and linear operator from W s,p(G) to W s− 1
p
,p(∂G);13

(ii) there exists a continuous linear operator Ext from W s− 1
p
,p(∂G) to W s,p(G) such14

that γ0 ◦ Ext is the identity operator in W s− 1
p
,p(∂G).15

We now state the trace theorem for the case of a domain with fractal boundary. We16

recall that the Koch snowflake is a df -set and the measure µΣ is a df -measure in the17

following sense (for more details, see [25]).18

Definition 1.2. A closed nonempty set M ⊂ RN is a d-set (for 0 < d ≤ N) if there19

exist a Borel measure µ with suppµ = M and two positive constants c1 and c2 such20

that21

c1r
d ≤ µ(B(x, r) ∩M) ≤ c2r

d ∀x ∈ M. (1.3)

The measure µ is called d-measure.22

From now on we denote the df -measure on Σ simply by µ.23

We now recall the definition of Besov space specialized to our case. For generalities on24

Besov spaces, we refer to [25].25
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Definition 1.3. Let F be a d-set with respect to a d-measure µ and γ = s − N−d
p

.

Bp,p
γ (F) is the space of functions for which the following norm is finite:

∥u∥p
Bp,p

γ (F)
= ∥u∥pLp(F) +

∫∫
|x−y|<1

|u(x)− u(y)|p

|x− y|d+γp
dµ(x) dµ(y).

Let p′ be the Hölder conjugate exponent of p. In the following, we will denote the dual1

of the Besov space Bp,p
γ (F) with (Bp,p

γ (F))′; we point out that this space coincides with2

the space Bp′,p′

−γ (F) (see [26]).3

We now state the trace theorem to the fractal set Σ. For the proof, we refer to [25,4

Theorem 1, Chapter VII].5

Proposition 1.4. Let F denote Ω1 or Ω2. Let
2−df
p

< s < 1 and γ(s) := s− 2−df
p

> 0.6

Bp,p
γ(s)(Σ) is the trace space of W s,p(F) in the following sense:7

(i) γ0 is a continuous linear operator from W s,p(F) to Bp,p
γ(s)(Σ);8

(ii) there exists a continuous linear operator Ext from Bp,p
γ(s)(Σ) to W

s,p(F) such that9

γ0 ◦ Ext is the identity operator in Bp,p
γ(s)(Σ).10

From now on we set11

γ(s) := s− 2− df
p

> 0. (1.4)

If u is a suitable function defined on the whole Ω, from now on we set ui := u|Ωi
for12

i = 1, 2.13

We point out that, if u ∈ Lp(Ω), then it follows that u1 ∈ Lq(Ω1) and u2 ∈ Lq(Ω2).14

Hence, for 1 ≤ q <∞, we have that15

∥u∥qq := ∥u∥qLq(Ω) = ∥u1∥qLq(Ω1)
+ ∥u2∥qLq(Ω2)

(1.5)

If q = ∞, it holds that

∥u∥∞ := ∥u∥L∞(Ω) = max
{
∥u1∥L∞(Ω1), ∥u2∥L∞(Ω2)

}
.

We now introduce the following Sobolev-type space:16

Wα,β
p (Ω) := {u ∈ Lp(Ω) : u1 ∈ W β,p(Ω1), u2 ∈ Wα,p(Ω2) and u1 = wu2 on Σ}, (1.6)

where w is a suitable smooth function defined on Σ. We endow this space with the17

following norm:18

∥u∥p
Wα,β

p (Ω)
:= ∥u∥pLp(Ω) + |u1|pWβ,p(Ω1)

+ |u2|pWα,p(Ω2)
. (1.7)

6



Finally, we recall that the set Ω1 belongs to the more general class of the so-called (ϵ, δ)1

domains having as boundary a d-set (for all the details we refer to the seminal paper2

of Jones [23]). Ω2 is a bounded (ϵ, δ) domain with boundary an arbitrary closed set3

in the sense of [24]. Such domains, even though they can be very irregular, enjoy the4

following important extension property; for details, we refer to Theorem 1, page 1035

and Theorem 3, page 155 in [25].6

Theorem 1.5. Let 0 < s < 1. There exists a linear extension operator7

Ext : W s,p(Ω1) → W s,p(R2) such that8

∥Extw∥pW s,p(R2) ≤ C̄s∥w∥pW s,p(Ω1)
, (1.8)

with C̄s depending on s.9

The domain Ω2 satisfies an analogous extension property, we refer to Theorem 1 in [24]10

for the details.11

Domains satisfying property (1.8) are the so-called W s,p-extension domain.12

1.2 Sobolev embeddings13

We now recall some important Sobolev-type embeddings for fractional Sobolev spaces14

on W s,p-extension domains, see [12, Theorem 6.7] and [25, Lemma 1, p. 214] respec-15

tively.16

From now on, we denote the Hausdorff dimension of Σ simply by d. We set

p∗(s) :=
2p

2− sp
.

Theorem 1.6. Let s ∈ (0, 1) and p ≥ 1 be such that sp < 2. Let Ω ⊆ R2 be a17

W s,p-extension domain. Then W s,p(Ω) is continuously embedded in Lq(Ω) for every18

q ∈ [1, p∗(s)], i.e. there exists a positive constant C = C(s, p,Ω) such that, for every19

u ∈ W s,p(Ω),20

∥u∥Lq(Ω) ≤ C∥u∥W s,p(Ω). (1.9)

We point out that for every 0 < s < 1 such that sp < 2 it holds p∗(s) ≥ p.21

From now on, let α, β ∈ (2−d
p
, 1) be two real numbers such that α ≥ β. We recall that if22

u ∈ Wα,β
p (Ω), then u1 ∈ W β,p(Ω1) and u2 ∈ Wα,p(Ω2); from Theorem 1.6, these spaces23

are continuously embedded in Lp∗(β)(Ω1) and in Lp∗(α)(Ω2) respectively. Moreover, it24

holds that p∗(α) ≥ p∗(β), hence Lp∗(α)(Ω2) ↪→ Lp∗(β)(Ω2); hence, we have the following25

continuous embedding:26

Wα,β
p (Ω) ↪→ Lp∗(β)(Ω). (1.10)
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We now recall the definition of γ(s) given in (1.4). If u ∈ Wα,β
p (Ω), from Proposition1

1.4, we have that2

γ0u1 ∈ Bp,p
γ(β)(Σ) (1.11)

and3

γ0u2 ∈ Bp,p
γ(α)(Σ). (1.12)

We point out that, since ∂Ω2 = Γ∪Σ and Γ is Lipschitz, from Proposition 1.1 we have4

that u2|Γ ∈ Wα− 1
p
,p(Γ).5

2 The regional fractional p-Laplacian and the6

Green formula7

We recall the definition of the regional fractional p-Laplacian. We refer to [40] and the8

references listed in.9

Let s ∈ (0, 1) and p > 1. For G ⊆ RN , we define the space10

Lp−1
s (G) :=

u : G → R measurable :

∫
G

|u(x)|p−1

(1 + |x|)N+sp
dLN(x) <∞

 .

The regional fractional Laplacian (−∆p)
s
G is defined as follows, for x ∈ G:11

(−∆p)
s
Gu(x) = CN,p,sP.V.

∫
G

|u(x)− u(y)|p−2u(x)− u(y)

|x− y|N+sp
dLN(y)

= CN,p,s lim
ε→0+

∫
{y∈G : |x−y|>ε}

|u(x)− u(y)|p−2u(x)− u(y)

|x− y|N+sp
dLN(y),

(2.1)

provided that the limit exists, for every function u ∈ Lp−1
s (G). The positive constant12

CN,p,s is defined as follows:13

CN,p,s =
s22sΓ(ps+p+N−2

2
)

π
N
2 Γ(1− s)

,

where Γ is the Euler function.14

We now introduce the p-fractional normal derivative on irregular set. We remark that15

the fractional normal derivative for smooth domains has been introduced in [20, 21]16

for the case p = 2 and it has then been extended to the case p ≥ 2 in [40].17

We recall a p-fractional Green formula for domains with fractal boundary, which, in18

turn, allows us to define the p-fractional normal derivative on non-smooth domains,19
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see [8, Section 2]. A key tool is the use of a limit argument since the fractal domain Ω11

(resp. Ω2) can be approximated by an increasing (resp. decreasing) sequence of pre-2

fractal domains Ωn
1 (resp. Ωn

2 ). We point out that the sequence of pre-fractal domains3

Ωn
i , for i = 1, 2, consists of polygonal non-convex domains.4

For i = 1, 2, we define the space

V ((−∆p)
s
Ωi
,Ωi) := {u ∈ W s,p(Ωi) : (−∆p)

s
Ωi
u ∈ Lp′(Ωi) in the sense of distributions},

which is a Banach space equipped with the norm5

∥u∥V ((−∆p)sΩi
,Ωi) := ∥u∥W s,p(Ωi) + ∥(−∆p)

s
Ωi
u∥Lp′ (Ωi)

.

Analogously, for every n ∈ N, we define the space V ((−∆p)
s
Ωn

i
,Ωn

i ) on Ωn
i as follows:

V ((−∆p)
s
Ωn

i
,Ωn

i ) := {u ∈ W s,p(Ωi) : (−∆p)
s
Ωn

i
u ∈ Lp′(Ωn

i ) in the sense of distributions}.

We now give a notion of p-fractional normal derivative on the boundary of the pre-6

fractal domains Ωn
i .7

Definition 2.1. Let n ∈ N and u ∈ V ((−∆p)
s
Ωn

i
,Ωn

i ) for either i = 1 or i = 2. We

say that u has a weak p-fractional normal derivative in (W s− 1
p
,p(∂Ωn

i ))
′ if there exists

g ∈ (W s− 1
p
,p(∂Ωn

i ))
′ such that

⟨g, v⟩
(W

s− 1
p ,p

(∂Ωn
i ))

′,W
s− 1

p ,p
(∂Ωn

i )
= −

∫
Ωn

i

(−∆p)
s
Ωn

i
u v dL2 (2.2)

+
C2,p,s

2

∫∫
Ωn

i ×Ωn
i

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+2
dL2(x)dL2(y)

for every v ∈ W s,p(Ωn
i ). In this case, g is uniquely determined and we call

Cp,sN p′(1−s)
p u := g the weak p-fractional normal derivative of u, where

Cp,s :=
(p− 1)C1,p,s

(sp− (p− 2))(sp− (p− 2)− 1)

∞∫
0

|t− 1|(p−2)+1−sp − (t ∨ 1)p−sp−1

tp−sp
dt.

We point out that, when s → 1− in (2.2), we recover the quasi-linear Green formula8

for Lipschitz domains [6].9

By proceeding as in the proof of Theorem 2.2 in [8] (see also Theorem 3.2 in [10]), we10

can prove the following “fractional Green formula” for the fractal domain Ω1. We can11

proceed analogously for the fractal domain Ω2.12
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Theorem 2.2 (Fractional Green formula). Let γ(s) be as defined in (1.4). There exists1

a bounded linear operator N p′(1−s)
p from V ((−∆p)

s
Ω1
,Ω1) to (Bp,p

γ(s)(Σ))
′.2

The following generalized Green formula holds for all u ∈ V ((−∆p)
s
Ω1
,Ω1) and v ∈3

W s,p(Ω1):4

Cp,s

〈
N p′(1−s)

p u, v
〉
(Bp,p

γ(s)
(Σ))′,Bp,p

γ(s)
(Σ)

= −
∫
Ω1

(−∆p)
s
Ω1
u v dL2

+
C2,p,s

2

∫∫
Ω1×Ω1

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|sp+2
dL2(x)dL2(y).

(2.3)

We remark that, when s→ 1− in (2.3), we recover the Green formula stated in [31] for5

fractal domains. We refer the reader to [10, Remark 3.3] for the detailed proof.6

3 Existence and uniqueness results7

3.1 The energy functional8

From now on, let p ≥ 2 and let b ∈ L∞(∂Ω) be a strictly positive bounded function on

∂Ω. We define the space

H := L2(Ω).

We point out that H is a Hilbert space with the scalar product (u, v)H :=

∫
Ω1

u1v1 dL2+9 ∫
Ω2

u2v2 dL2.10

We recall the fractional transmission problem formally stated in the Introduction:

(P̃ )



∂u1

∂t
(t, x) + (−∆p)

β
Ω1
u1(t, x) = f1(t, x) in (0, T ]× Ω1,

∂u2

∂t
(t, x) + (−∆p)

α
Ω2
u2(t, x) = f2(t, x) in (0, T ]× Ω2,

u1 = wu2 on (0, T ]× Σ,

Nu+ b|u2|p−2u2 = 0 on (0, T ]× Σ,

N p′(1−α)
p u2 = 0 on (0, T ]× Γ,

u1(0, x) = u01(x) in Ω1,

u2(0, x) = u02(x) in Ω2,

where u ∈ Wα,β
p (Ω), w ∈ Bp,p

θ (Σ) for θ ≥ γ(β) such that θ + α − β > d
p
, N p′(1−α)

p is11

the (α, p)-normal derivative defined by the Green formula (2.3), ui := u|Ωi
for i = 1, 212
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(analogously for fi) and fi and u
0
i are given functions for i = 1, 2.1

We remark that, under the hypotheses on θ, we have that wu2 ∈ Bp,p
γ(β)(Σ), see [42].2

As stated in the Introduction, Nu is the jump of the nonlinear fractional normal3

derivative in a suitable weak sense. Let u ∈ Wα,β(Ω). Then, from Theorem 2.2,4

N p′(1−β)
p u1 andN p′(1−α)

p u2 are defined by (2.3) as elements of the dual spaces of Bp,p
γ(β)(Σ)5

and Bp,p
γ(α)(Σ) respectively.6

Since by hypothesis α ≥ β, we have that Bp,p
γ(α)(Σ) ⊆ Bp,p

γ(β)(Σ). Hence, for u, v ∈7

Wα,β
p (Ω) we set Nu in the following way:8

⟨Nu, v⟩ := Cp,β⟨N p′(1−β)
p u1, v1⟩(Bp,p

γ(β)
(Σ))′,Bp,p

γ(β)
(Σ) − Cp,α⟨N p′(1−α)

p u2, v2⟩(Bp,p
γ(α)

(Σ))′,Bp,p
γ(α)

(Σ);

(3.1)

with this definition, Nu is an element of (Bp,p
γ(α)(Σ))

′.9

We define the following energy functional for every u ∈ H:10

Φα,β
p [u] :=



C2,p,β

2p

∫∫
Ω1×Ω1

|u1(x)− u1(y)|p

|x− y|βp+2
dL2(x)dL2(y) +

C2,p,α

2p

∫∫
Ω2×Ω2

|u2(x)− u2(y)|p

|x− y|αp+2
dL2(x)dL2(y)

+
1

p

∫
Σ

b|u2|p dµ if u ∈ D(Φα,β
p ),

+∞ if u ∈ H \D(Φα,β
p ),

(3.2)

where the effective domain is D(Φα,β
p ) := Wα,β

p (Ω).11

The following result follows as in Proposition 3.1 in [8].12

Proposition 3.1. Φα,β
p is a weakly lower semicontinuous, proper and convex functional13

in H. Moreover, its subdifferential ∂Φα,β
p is single-valued.14

We point out that Proposition 3.1 can be proved also for 1 < p < 2.15

3.2 The abstract Cauchy problem16

Let T be a fixed positive number. We now consider the abstract Cauchy problem

(P )

{
∂u
∂t

+Aα,β
p u = f, t ∈ [0, T ]

u(0) = u0,

where Aα,β
p is the subdifferential of Φα,β

p and f and u0 are given functions.17

According to [3, Section 2.1, chapter II], we give the following definition.18

11



Definition 3.2. A function u : [0, T ] → H is a strong solution of problem (P ) if1

u ∈ C([0, T ];H), u(t) is differentiable a.e. in (0, T ), u(t) ∈ D(−Aα,β
p ) a.e. and2

∂u
∂t

+Aα,β
p u = f for a.e. t ∈ [0, T ].3

From [3, Theorem 2.1, chapter IV] the following existence and uniqueness result for4

the strong solution of problem (P ) holds.5

Theorem 3.3. If u0 ∈ D(−Aα,β
p ) and f ∈ L2([0, T ];H), then problem (P ) has a6

unique strong solution u ∈ C([0, T ];H) such that u ∈ W 1,2((δ, T );H) for every δ ∈7

(0, T ). Moreover u ∈ D(−Aα,β
p ) a.e. for t ∈ (0, T ),

√
t∂u
∂t

∈ L2(0, T ;H) and Φα,β
p [u] ∈8

L1(0, T ).9

From Theorem 1 and Remark 2 in [5] (see also [3]) we have the following result.10

Theorem 3.4. Let φ : H → (−∞,+∞] be a proper, convex, lower semicontinuous

functional on a real Hilbert space H, with effective domain D(φ). Then the subdiffer-

ential ∂φ is a maximal monotone m-accretive operator. Moreover, D(φ) = D(∂φ) and

−∂φ generates a nonlinear C0-semigroup {T (t)}t≥0 on D(φ) in the following sense: for

each u0 ∈ D(φ), the function u := T (·)u0 is the unique strong solution of the problem
u ∈ C(R+;H) ∩W 1,∞

loc ((0,∞);H) and u(t) ∈ D(φ) a.e.,
∂u

∂t
+ ∂φ(u) ∋ 0 a.e. on R+,

u(0, x) = u0(x).

In addition, −∂φ generates a nonlinear semigroup {T̃ (t)}t≥0 on H where, for every11

t ≥ 0, T̃ (t) is the composition of the semigroup T (t) on D(φ) with the projection on12

the convex set D(φ).13

From Proposition 3.1 and Theorem 3.4, we have that the subdifferential ∂Φα,β
p is max-14

imal, monotone and m-accretive operator on H, with domain dense in H.15

We now denote by Tα,β
p (t) the nonlinear semigroup generated by −∂Φα,β

p . From Propo-16

sition 3.2, page 176 in [36] the following result holds.17

Proposition 3.5. Tα,β
p (t) is a strongly continuous and contractive semigroup on H.18

3.3 Strong formulation19

We now prove that the strong solution of problem (P ) actually solves problem (P̃ ).20

We first need a characterization of the subdifferential of Φα,β
p .21

12



Theorem 3.6. Let u belong to Wα,β
p (Ω) for a.e. t ∈ (0, T ], and let f ∈ H. Then1

f ∈ ∂Φα,β
p [u] if and only if u solves the following problem:2

(P̄ )



(−∆p)
β
Ω1
u1 = f1 in Lp′(Ω1),

(−∆p)
α
Ω2
u2 = f2 in Lp′(Ω2),

u1 = wu2 on Σ,

⟨Nu, v⟩+ ⟨b|u2|p−2u2, v2⟩Lp′ (Σ),Lp(Σ) = 0 ∀ v ∈ Bp,p
γ(α)(Σ),

N p′(1−α)
p u2 = 0 on (Wα− 1

p
,p(Γ))′.

Proof. Let f ∈ ∂Φα,β
p , i.e.3

Φα,β
p [v]− Φα,β

p [u] ≥ (f, v − u)H for every v ∈ Wα,β
p (Ω). (3.3)

We choose v = u+ tz, with z ∈ Wα,β
p (Ω) and 0 < t ≤ 1 in (3.3) and we obtain4

t

∫
Ω1

f1 z1 dL2 + t

∫
Ω2

f2 z2 dL2 ≤

C2,p,β

2p

∫∫
Ω1×Ω1

|(u1 + tz1)(x)− (u1 + tz1)(y)|p − |u1(x)− u1(y)|p

|x− y|βp+2
dL2(x)dL2(y)

+
C2,p,α

2p

∫∫
Ω2×Ω2

|(u2 + tz2)(x)− (u2 + tz2)(y)|p − |u2(x)− u2(y)|p

|x− y|αp+2
dL2(x)dL2(y)

+
1

p

∫
Σ

b(|u2 + tz2|p − |u2|p) dµ.

(3.4)

We first take z ∈ D(Ω1) and, by passing to the limit for t→ 0+ in (3.4), we obtain∫
Ω1

f1 z1 dL2 ≤
C2,p,β

2

∫∫
Ω1×Ω1

|u1(x)− u1(y)|p−2(u1(x)− u1(y))(z1(x)− z1(y))

|x− y|βp+2
dL2(x)dL2(y).

By taking −z in (3.4) we obtain the opposite inequality, and hence we get5 ∫
Ω1

f1 z1 dL2 =
C2,p,β

2

∫∫
Ω1×Ω1

|u1(x)− u1(y)|p−2(u1(x)− u1(y))(z1(x)− z1(y))

|x− y|βp+2
dL2(x)dL2(y).

Since z ∈ D(Ω1) and p
′ ≤ 2, it turns out that in particular f1 ∈ Lp′(Ω1). Hence, the6

p-fractional Green formula for fractal domains given by Theorem 2.2 yields that7

(−∆p)
β
Ω1
u1 = f1 in Lp′(Ω1) (3.5)

13



(and in particular in L2(Ω1)).1

We remark that, if we take z ∈ D(Ω2) and we proceed analogously, we obtain that2

(−∆p)
α
Ω2
u2 = f2 in Lp′(Ω2) and in L2(Ω2).3

We now go back to (3.4). Dividing by t > 0 and passing to the limit for t → 0+, we4

get5 ∫
Ω1

f1z1 dL2 +

∫
Ω2

f2z2 dL2 ≤
C2,p,β

2

∫∫
Ω1×Ω1

|u1(x)− u1(y)|p−2(u1(x)− u1(y))(z1(x)− z1(y))

|x− y|βp+2
dL2(x)dL2(y)

+
C2,p,α

2

∫∫
Ω2×Ω2

|u2(x)− u2(y)|p−2(u2(x)− u2(y))(z2(x)− z2(y))

|x− y|αp+2
dL2(x)dL2(y) +

∫
Σ

b|u2|p−2u2z2 dµ.

As above, by taking −z we obtain the opposite inequality, hence we get the equality.6

Then, by Theorem 2.2 and (3.5) we obtain that7

Cp,β

〈
N p′(1−β)

p u1, z1

〉
(Bp,p

γ(β)
(Σ))′,Bp,p

γ(β)
(Σ)

−Cp,s

〈
N p′(1−α)

p u2, z2

〉
(Bp,p

γ(α)
(∂Ω2))′,B

p,p
γ(α)

(∂Ω2)
+

∫
Σ

b|u2|p−2u2 z2 dµ = 0

(3.6)

for every z ∈ Wα,β
p (Ω). Choosing suitably z2 such that it vanishes on Σ, we obtain that8

N p′(1−α)
p u2 = 0 in (Wα− 1

p
,p(Γ))′, while choosing suitably z2 vanishing on Γ, and taking9

into account the definition of Nu given in (3.1), we have that10

⟨Nu, z⟩+
∫
Σ

b|u2|p−2u2 z2 dµ = 0

holds in (Bp,p
γ(α)(Σ))

′. This proves the assertion.11

In order to prove the converse, let u ∈ Wα,β
p (Ω) be the weak solution of problem (P̄ ).12

We have to prove that Φα,β
p [v]−Φα,β

p [u] ≥ (f, v− u)H for every v ∈ Wα,β
p (Ω). By using13

the inequality14

1

p
(|a|p − |b|p) ≥ |b|p−2b(a− b)

and the hypothesis that u is the weak solution of (P̄ ), the thesis follows (see e.g. [8,15

Theorem 3.6]).16

Theorem 3.6 implies that the unique strong solution u of the abstract Cauchy problem17

(P ) solves the following Robin-type problem ˜(P ) on Ω for a.e. t ∈ (0, T ] in the following18

14



weak sense:1

(P̃ )



∂u1

∂t
(t, x) + (−∆p)

β
Ω1
u1(t, x) = f1(t, x) for a.e. x ∈ Ω1,

∂u2

∂t
(t, x) + (−∆p)

α
Ω2
u2(t, x) = f2(t, x) for a.e. x ∈ Ω2,

u1 = wu2 on Σ,

⟨Nu, v⟩+ ⟨b|u2|p−2u2, v2⟩Lp′ (Σ),Lp(Σ) = 0 ∀ v ∈ Bp,p
γ(α)(Σ),

N p′(1−α)
p u2 = 0 in (Wα− 1

p
,p(Γ))′,

u(0, x) = u0(x) in H,

where2

u0(x) :=

u
0
1(x) on Ω1,

u02(x) on Ω2.

4 Ultracontractivity results3

We now focus on proving the ultracontractivity of the semigroup Tα,β
p (t).4

We first need some preliminary results. From (1.5) and (1.10), it follows that for every5

q ∈ [1, p∗(β)]6

∥u∥q ≤ C
(
∥u∥p + |u1|Wβ,p(Ω1) + |u2|Wα,p(Ω2)

)
. (4.1)

Moreover, for every ε > 0 there exists a constant Cε > 0 such that7

∥u∥q ≤ Cε

(
ε∥u∥p + |u1|Wβ,p(Ω1) + |u2|Wα,p(Ω2)

)
. (4.2)

We first prove a fractional logarithmic Sobolev inequality tailored to the problem at8

hand.9

Proposition 4.1. Let p ≥ 2, α, β ∈ (2−d
p
, 1) and βp ≤ αp < 2. Let u ∈ Wα,β

p (Ω) be10

non-negative on Ω and such that ∥u∥pp = ∥u1∥pLp(Ω1)
+ ∥u2∥pLp(Ω2)

= 1. We set11

Λ(u) :=

∫
Ω1

u1 dL2 +

∫
Ω2

u2 dL2. (4.3)

Then for every ε > 0 there exists a positive constant Cε depending also on α, β, p and12

Ω such that, for every ε̄ > 0,13

Λ(up log u) ≤ 2

βp2

[
ε̄Cε

(
|u1|pWβ,p(Ω1)

+ |u2|pWα,p(Ω2)

)
− log ε̄+ ε̄Cεε

]
, (4.4)

where up log u := (up1 log u1, u
p
2 log u2).14
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Proof. We adapt to our aim the proof of Lemma 3.2 in [29]. We apply Jensen’s in-1

equality with q = p∗(β)− p = βp2

2−βp
and we obtain2

Λ(up log u) ≤ 1

q
log Λ(up+q) =

2− βp

βp2
log ∥u∥p

∗(β)
p∗(β) =

2

βp2
log ∥u∥pp∗(β). (4.5)

Moreover, from the properties of the logarithmic function, for every ε̄ > 0 we have that3

4

log ∥u∥pp∗(β) ≤ ε̄∥u∥pp∗(β) − log ε̄. (4.6)

We then estimate ∥u∥pp∗(β) in (4.6) using (4.2) with q = p∗(β). Hence, since ∥u∥pp = 1,5

we obtain that for every ε > 0 there exists a positive constant Cε such that6

Λ(up log u) ≤ 2

βp2

[
ε̄Cε

(
|u1|pWβ,p(Ω1)

+ |u2|pWα,p(Ω2)
+ ε
)
− log ε̄

]
,

and this concludes the proof.7

We now prove some preliminary lemmas which will allow us to prove the ultracontrac-8

tivity of the nonlinear semigroup Tα,β
p (t). We adapt to the fractional framework the9

results of [29, Section 3.2], see also [39, 40, 41].10

We first recall some known numerical inequalities. For more details we refer to [4].11

Proposition 4.2. Let a, b ∈ RN . If r ∈ (1,∞), it holds that12 (
|a|r−2a− |b|r−2b

)
(a− b) ≥ (r − 1) (|a|+ |b|)r−2 |a− b|2. (4.7)

If r ∈ [2,∞), then for c∗r := min{1/(r − 1), 2−2−r 3−r/2} ∈ (0, 1], it holds that13 (
|a|r−2a− |b|r−2b

)
(a− b) ≥ c∗r |a− b|r. (4.8)

We remark that (4.8) implies14 (
|a|r−2a− |b|r−2b

)
sgn(a− b) ≥ c∗r |a− b|r−1. (4.9)

Lemma 4.3. Let
{
Tα,β
p (t)

}
t≥0

be the Markovian semigroup on H generated by −∂Φα,β
p .15

Given t ≥ 0 and u0, v0 ∈ L∞(Ω), let u(t, x) := Tα,β
p (t)u0(x) and v(t, x) := Tα,β

p (t)v0(x)16

be the solutions of the homogeneous problem associated to (P ) with initial data u0 and17

v0 respectively. We set U(t, x) := u(t, x)− v(t, x), i.e.18

U(t, x) =


U1(t, x) := u1(t, x)− v1(t, x) on Ω1,

U2(t, x) := u2(t, x)− v2(t, x) on Ω2,

U1 = wU2 on Σ.
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Then, for every real number r ≥ 2 and for a.e. t ≥ 0, there exists a constant C̃ =1

C̃(α, β, p) such that2

d

dt
∥U(t)∥rr ≤ − rC̃

 ∫∫
Ω1×Ω1

|U1(t, x)− U1(t, y)|r+p−2

|x− y|βp+2
dL2(x)dL2(y)

+

∫∫
Ω2×Ω2

|U2(t, x)− U2(t, y)|r+p−2

|x− y|αp+2
dL2(x)dL2(y)

− c∗pb0r

∫
Σ

|U2(t)|r+p−2 dµ,

where c∗p > 0 is the constant given in Proposition 4.2 and b0 = min
Ω
b.3

Proof. We fix t ≥ 0. We point out that u(t), v(t) ∈ Wα,β
p (Ω), hence also U(t) ∈

Wα,β
p (Ω). For r ≥ 2, we define the function Gr : [0,∞) → [0,∞) by

Gr(t) := ∥U(t)∥rr = ∥U1(t)∥rLr(Ω1)
+ ∥U2(t)∥rLr(Ω2)

.

Gr is clearly differentiable for a.e. t ≥ 0. Taking into account the characterization of4

the subdifferential ∂Φα,β
p given by Theorem 3.6, since u(t) and v(t) are solutions of the5

abstract Cauchy problem (P ) with f = 0 and initial data u0 and v0 respectively, we6

get7

G′
r(t) = r

∫
Ω1

|U1(t)|r−2U1(t)(u
′
1(t)− v′1(t)) dL2 + r

∫
Ω2

|U2(t)|r−2U2(t)(u
′
2(t)− v′2(t)) dL2

= −r
∫
Ω1

|U1(t)|r−2U1(t)
(
(−∆p)

β
Ω1
u1(t)− (−∆p)

β
Ω1
v1(t)

)
dL2

− r

∫
Ω2

|U2(t)|r−2U2(t)
(
(−∆p)

α
Ω2
u2(t)− (−∆p)

α
Ω2
v2(t)

)
dL2.

In order to simplify the notation, we set8

Ψ :=

Ψ1 := |U1|r−2U1 on Ω1,

Ψ2 := |U2|r−2U2 on Ω2.

Using the Green formula (2.3), since outward normals to Ω1 and Ω2 at the interface Σ9

have opposite sign, we get10
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G′
r(t) = −rC2,p,β

2

 ∫∫
Ω1×Ω1

|u1(t, x)− u1(t, y)|p−2(u1(t, x)− u1(t, y))(Ψ1(t, x)−Ψ1(t, y))

|x− y|βp+2
dL2(x)dL2(y)

−
∫∫

Ω1×Ω1

|v1(t, x)− v1(t, y)|p−2(v1(t, x)− v1(t, y))(Ψ1(t, x)−Ψ1(t, y))

|x− y|βp+2
dL2(x)dL2(y)



− r
C2,p,α

2

 ∫∫
Ω2×Ω2

|u2(t, x)− u2(t, y)|p−2(u2(t, x)− u2(t, y))(Ψ2(t, x)−Ψ2(t, y))

|x− y|αp+2
dL2(x)dL2(y)

−
∫∫

Ω2×Ω2

|v2(t, x)− v2(t, y)|p−2(v2(t, x)− v2(t, y))(Ψ2(t, x)−Ψ1(t, y))

|x− y|αp+2
dL2(x)dL2(y)


+ rCp,β

[
⟨N p′(1−β)

p u1,Ψ1⟩ − ⟨N p′(1−β)
p v1,Ψ1⟩

]
− rCp,α

[
⟨N p′(1−α)

p u2,Ψ2⟩ − ⟨N p′(1−α)
p v2,Ψ2⟩

]
.

(4.10)

We now apply (4.8) and, recalling the definition of N given in (3.1), we use the trans-1

mission condition of problem (P̃ ). Then, by using the properties of the function b and2

the definition of Ψ, from (4.10) we deduce that3

G′
r(t) ≤ −rc∗p

C2,p,β

2

∫∫
Ω1×Ω1

|U1(t, x)− U1(t, y)|r+p−2

|x− y|βp+2
dL2(x)dL2(y)

+
C2,p,α

2

∫∫
Ω2×Ω2

|U2(t, x)− U2(t, y)|r+p−2

|x− y|βp+2
dL2(x)dL2(y)

− rc∗pb0

∫
Σ

b|U2(t)|r+p−2 dµ.

Setting C̃ := c∗p max
{

C2,p,β

2
, C2,p,α

2

}
, we get the thesis.4

We remark that, as a consequence of Lemma 4.3, we have that Gr(t) := ∥U(t)∥rr =5

∥U1(t)∥rLr(Ω1)
+ ∥U2(t)∥rLr(Ω2)

is non-increasing w.r.t. t.6

We now recall the following useful result. We refer to [41, Lemma 4.1].7

Lemma 4.4. Let p, r ≥ 2 and s ∈ (0, 1). Then, for every u, v ∈ W s,p(Ω) it holds that8

Cr,p(|u|
r+p−2

p , |u|
r+p−2

p )s,p ≤ Cr,p(|u|
r−2
p , |u|

r−2
p )s,p ≤ (u, |u|r−2u)s,p, (4.11)

where Cr,p := (r − 1)

(
p

r + p− 2

)p

.9

The next two lemmas follow by adapting to the fractional setting Lemmas 3.5 and 3.610

in [29] (see also [8] and [38]).11
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Lemma 4.5. Under the same notations and assumptions of Lemma 4.3, if r : [0,∞) →1

[2,∞) is an increasing differentiable function, then for a.e. t ≥ 0 and for every ε, ε̄ > 02

we have that3

d

dt
log ∥U(t)∥r(t) ≤

r′(t)

r(t)
Λ

(
|U(t)|r(t)

∥U(t)∥r(t)r(t)

log
|U(t)|

∥U(t)∥r(t)

)

− C̃(r(t)− 1)

ε̄Cε

(
p

r(t) + p− 2

)p

log ε̄
∥U(t)∥r(t)+p−2

r(t)+p−2

∥U(t)∥r(t)r(t)

+ εC̃(r(t)− 1)

(
p

r(t) + p− 2

)p ∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

− C̃(r(t)− 1)

ε̄Cε

(
p

r(t) + p− 2

)p−1
βp2

2

∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

Λ

(
|U(t)|r(t)+p−2

∥U(t)∥r(t)+p−2
r(t)+p−2

log
|U(t)|

∥U(t)∥r(t)+p−2

)
,

(4.12)

where Cε and C̃ are the constants appearing in (4.4) and (4.10) respectively and Λ is4

defined as in (4.3).5

Proof. From the chain rule and from Lemma 4.3, we have that6

d

dt
log ∥U(t)∥r(t) = −r

′(t)

r(t)
log ∥U(t)∥r(t) +

1

r(t)∥U(t)∥r(t)r(t)

d

dt
∥U(t)∥r(t)r(t) ≤ −r

′(t)

r(t)
log ∥U(t)∥r(t)

+
r′(t)

r(t)

1

∥U(t)∥r(t)r(t)

Λ
(
|U(t)|r(t) log |U(t)|

)
−

c∗pb0

∥U(t)∥r(t)r(t)

∫
Σ

|U2(t)|r(t)+p−2 dµ− C̃

∥U(t)∥r(t)r(t)

·

·

 ∫∫
Ω1×Ω1

|U1(t, x)− U1(t, y)|p−2(U1(t, x)− U1(t, y))(|U1(t, x)|r(t)U1(t, x)− |U1(t, y)|r(t)U1(t, y))

|x− y|βp+2
dL2(x)dL2(y)

+

∫∫
Ω2×Ω2

|U2(t, x)− U2(t, y)|p−2(U2(t, x)− U2(t, y))(|U2(t, x)|r(t)U2(t, x)− |U2(t, y)|r(t)U2(t, y))

|x− y|αp+2
dL2(x)dL2(y)

 .

(4.13)

Recalling the definition of Λ, using Lemma 4.4 and estimating the term on the fractal7

interface Σ with zero, we get8
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d

dt
log ∥U(t)∥r(t) ≤

r′(t)

r(t)
Λ

(
|U(t)|r(t)

∥U(t)∥r(t)r(t)

log
|U(t)|

∥U(t)∥r(t)

)

− C̃

∥U(t)∥r(t)r(t)

(r(t)− 1)

(
p

r(t) + p− 2

)p
 ∫∫

Ω1×Ω1

∣∣∣|U1(t, x)|
r(t)+p−2

p − |U1(t, y)|
r(t)+p−2

p

∣∣∣p
|x− y|βp+2

dL2(x)dL2(y)

+

∫∫
Ω2×Ω2

∣∣∣|U2(t, x)|
r(t)+p−2

p − |U2(t, y)|
r(t)+p−2

p

∣∣∣p
|x− y|αp+2

dL2(x)dL2(y)

 =
r′(t)

r(t)
Λ

(
|U(t)|r(t)

∥U(t)∥r(t)r(t)

log
|U(t)|

∥U(t)∥r(t)

)

− C̃(r(t)− 1)

(
p

r(t) + p− 2

)p ∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

(
|F1(t)|pWβ,p(Ω1)

+ |F2(t)|pWα,p(Ω2)

)
,

(4.14)

where for i = 1, 2

Fi(t, x) :=
|Ui(t)|

r(t)+p−2
p

∥U(t)∥
r(t)+p−2

p

r(t)+p−2

.

If we define F = F (t, x) to be equal to Fi on Ωi for i = 1, 2, then F fulfills the1

hypotheses of Proposition 4.1. Thus, since it holds that2

Λ(F p logF ) =
r(t) + p− 2

p
Λ

(
|U(t)|r(t)+p−2

∥U(t)∥r(t)+p−2
r(t)+p−2

log
|U(t)|

∥U(t)∥r(t)+p−2

)
,

the thesis follows.3

Lemma 4.6. Under the assumptions of Lemma 4.5, for a.e. t ≥ 0 we have that4

d

dt
log ∥U(t)∥r(t) ≤ −A(t) log ∥U(t)∥r(t) −B(t), (4.15)

where5

A(t) :=
r′(t)2(p− 2)

r(t)βp(r(t) + p− 2)
, (4.16)

6

B(t) :=− r′(t)(p− 2)(2− βp)

r(t)βp(r(t) + p− 2)
logω − C̃p

+
2r′(t)

r(t)βp(r(t) + p− 2)
log

[
r(t)

r′(t)

βp2

2
Ĉ(r(t)− 1)

(
p

r(t) + p− 2

)p−1
]
,

(4.17)

Ĉ = Ĉ(α, β, p,Ω) is a positive constant and ω = max {|Ω1|, |Ω2|}.7
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Proof. We choose ε̄ > 0 as follows:1

ε̄ :=
r(t)

r′(t)

βp2

2

C̃

Cε

(r(t)− 1)

(
p

r(t) + p− 2

)p−1 ∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

.

Hence from (4.12) we get2

d

dt
log ∥U(t)∥r(t) ≤

r′(t)

r(t)

[
Λ

(
|U(t)|r(t)

∥U(t)∥r(t)r(t)

log
|U(t)|

∥U(t)∥r(t)

)
− Λ

(
|U(t)|r(t)+p−2

∥U(t)∥r(t)+p−2
r(t)+p−2

log
|U(t)|

∥U(t)∥r(t)+p−2

)]

− r′(t)

r(t)(r(t) + p− 2)

2

βp
log

[
r(t)

r′(t)

βp2

2

C̃

Cε

(r(t)− 1)

(
p

r(t) + p− 2

)p−1 ∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

]

+ εC̃(r(t)− 1)

(
p

r(t) + p− 2

)p ∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

.

(4.18)

We now choose3

ε :=
∥U(t)∥r(t)r(t)

∥U(t)∥r(t)+p−2
r(t)+p−2

and we point out that, since r(t) ≥ 2 and p ≥ 2, it holds that

(r(t)− 1)

(
p

r(t) + p− 2

)p

≤ p.

Hence, for a suitable positive constant Ĉ depending on α, β, p and Ω, from (4.18) we4

get5

d

dt
log ∥U(t)∥r(t) ≤

r′(t)

r(t)

[
Λ

(
|U(t)|r(t)

∥U(t)∥r(t)r(t)

log
|U(t)|

∥U(t)∥r(t)

)
− Λ

(
|U(t)|r(t)+p−2

∥U(t)∥r(t)+p−2
r(t)+p−2

log
|U(t)|

∥U(t)∥r(t)+p−2

)]

+ C̃p− r′(t)

r(t)(r(t) + p− 2)

2

βp
log

[
r(t)

r′(t)

βp2

2
Ĉ(r(t)− 1)

(
p

r(t) + p− 2

)p−1 ∥U(t)∥r(t)+p−2
r(t)+p−2

∥U(t)∥r(t)r(t)

]
.

(4.19)

We now set

K(q, U) := Λ

(
|U |q

∥U∥qq
log

|U |
∥U∥q

)
=

∫
Ω1

|U1|q

∥U∥qq
log

|U1|
∥U∥q

dL2 +

∫
Ω2

|U2|q

∥U∥qq
log

|U2|
∥U∥q

dL2.
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The functional K(q, U) satisfies the following property: for every q2 ≥ q1 ≥ 1 and for1

every U ∈ L∞(Ω)2

K(q2, U)−K(q1, U) ≥ log
∥U∥q1
∥U∥q2

. (4.20)

Applying (4.20) with q1 = r(t) and q2 = (r(t) + p − 2), from (4.19) and using the3

properties of the logarithmic function, we get4

d

dt
log ∥U(t)∥r(t) ≤

r′(t)

r(t)

(
1− 2

βp

)
log ∥U(t)∥r(t)+p−2 + C̃p− r′(t)

r(t)

(
1− 2r(t)

βp(r(t) + p− 2)

)
log ∥U(t)∥r(t)

− r′(t)

r(t)(r(t) + p− 2)

2

βp
log

[
r(t)

r′(t)

βp2

2
Ĉ(r(t)− 1)

(
p

r(t) + p− 2

)p−1
]
.

(4.21)

We remark that, since βp < 2, 1− 2
βp
< 0. Thus, from Hölder inequality we have that5

d

dt
log ∥U(t)∥r(t) ≤

r′(t)

r(t)

2(2− p)

βp(r(t) + p− 2)
log ∥U(t)∥r(t) +

r′(t)

r(t)

2− βp

βp

p− 2

r(t) + p− 2
logω

+ C̃p− r′(t)

r(t)(r(t) + p− 2)

2

βp
log

[
r(t)

r′(t)

βp2

2
Ĉ(r(t)− 1)

(
p

r(t) + p− 2

)p−1
]
.

(4.22)

Hence, taking into account the definitions of A(t) and B(t) in (4.16) and (4.17) respec-6

tively, estimate (4.15) follows.7

We now prove the ultracontractivity of the semigroup Tα,β
p (t).8

Theorem 4.7. Let p > 2 and βp ≤ αp < 2. In the notations of the above lemmas, if9

q ∈ [2,∞], then there exist two positive constants C1, C2 depending on α, β, p, q and10

Ω such that11

∥Tα,β
p (t)u0 − Tα,β

p (t)v0∥∞ ≤ C1(max{|Ω1|, |Ω2|})λ1(β)eC2tt−λ2(β)∥u0 − v0∥λ3(β)
q , (4.23)

for every u0, v0 ∈ Lq(Ω) and for every t > 0, where12

λ1(β) =
2− βp

2

[
1−

(
q

q + p− 2

) 2
βp

]
, λ2(β) =

1

p− 2

[
1−

(
q

q + p− 2

) 2
βp

]
,

λ3(β) =

(
q

q + p− 2

) 2
βp

.

(4.24)
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Proof. We first take u0, v0 ∈ L∞(Ω) and we use the same assumptions and notations of1

Lemma 4.6. In particular, we consider an increasing differentiable function r : [0,∞) →2

[2,∞) and we define A(t) and B(t) as in (4.16) and (4.17) respectively.3

We set

y(t) := log ∥U(t)∥r(t);

then, from (4.15), y(t) satisfies the following ordinary differential inequality:4

y′(t) + A(t)y(t) +B(t) ≤ 0. (4.25)

We now consider the following ODE:5 x′(t) + A(t)x(t) +B(t) = 0,

x(0) = y(0).
(4.26)

The unique solution x(t) of (4.26) can be written in the following way:6

x(t) = exp

−
t∫

0

A(τ) dτ

y(0)− t∫
0

B(τ) exp

 τ∫
0

A(σ) dσ

 dτ

 ; (4.27)

hence, the solution y(t) of the ordinary differential inequality (4.25) is such that y(t) ≤7

x(t) for every t ∈ [0,∞).8

We now fix t > 0, for any given q ≥ 2 and for τ ∈ [0, t) we set9

r(τ) :=
qt

t− τ
. (4.28)

The function r(·) satisfies the hypotheses of Lemma 4.5, i.e. it is increasing and differ-

entiable on [0, t) and r(τ) ≥ 2 for every τ ∈ [0, t).

Using (4.28), we obtain that

A(τ) =
2

βp

p− 2

t(q + p− 2)− τ(p− 2)

and10

B(τ) = −(2− βp)(p− 2)

βp

1

t(q + p− 2)− τ(p− 2)
logω − C̃p+

2

βp
·

· 1

t(q + p− 2)− τ(p− 2)
log

[
βp2

2
Ĉ (t(q − 1) + τ)

(
p(t− τ)

t(q + p− 2)− τ(p− 2)

)p−1
]
,

where C̃ and Ĉ are the constants in Lemma 4.3 and Lemma 4.6 respectively.11

We now write x(t) more explicitly. From standard calculations, we have that12

lim
τ→t−

exp

−
τ∫

0

A(σ) dσ

 =

(
q

q + p− 2

) 2
βp

. (4.29)

23



Moreover, again from standard calculations, we can prove that1

lim
τ→t−

τ∫
0

B(σ) exp

 σ∫
0

A(ξ) dξ

 dσ = −2− βp

2
logω

[(
q + p− 2

q

) 2
βp

− 1

]
− Čt

+
1

p− 2

[(
q + p− 2

q

) 2
βp

− 1

] [
log

(
βpp

2
Ĉ

)
+ log t

]
+ I(1) + I(2) − I(3),

(4.30)

where Č is a suitable positive constant depending on β, p, Ω and q and I(1), I(2) and2

I(3) are integral terms which do not depend on t and can be explicitly computed as in3

[7, proof of Lemma 3.9].4

From (4.29) and (4.30) it follows that5

lim
τ→t−

x(τ) =

(
q

q + p− 2

) 2
βp

y(0) +
2− βp

2
logω

[
1−

(
q

q + p− 2

) 2
βp

]
+ C2t

− 1

p− 2

[
1−

(
q

q + p− 2

) 2
βp

][
log

(
βpp

2
Ĉ

)
+ log t

]
+ CI ,

(4.31)

where C2 =
(

q
q+p−2

) 2
βp
Č and CI =

(
q

q+p−2

) 2
βp

(I(3) − I(1) − I(2)).6

We now point out that, as a consequence of Lemma 4.3, for every 0 ≤ τ < t it holds7

∥U(t)∥r(τ) = ∥u(t)− v(t)∥r(τ) ≤ ∥u(τ)− v(τ)∥r(τ) = ∥U(τ)∥r(τ) = ey(τ) ≤ ex(τ). (4.32)

Since y(0) = log ∥U(0)∥r(0) = log ∥u0 − v0∥q, from (4.31) and (4.32) we obtain8

lim
τ→t−

∥U(t)∥r(τ) ≤ lim
τ→t−

ex(τ) = ∥u0 − v0∥λ3(β)
q ωλ1(β) eC2t t−λ2(β)

(
βpp+1

2
Ĉ

)−λ2(β)

eCI ,

(4.33)

where the constants λ1(β), λ2(β) and λ3(β) are as defined in (4.24).9

Finally, we remark that10

lim
τ→t−

r(τ) = +∞.

Therefore, from the definition of ω, there exists a suitable positive constant C1 depend-11

ing on α, β, p, Ω and q such that12

∥U(t)∥∞ = ∥Tα,β
p (t)u0−Tα,β

p (t)v0∥∞ ≤ C1(max{|Ω1|, |Ω2|})λ1(β)eC2tt−λ2(β)∥u0−v0∥λ3(β)
q ,

thus the thesis follows in the case u0, v0 ∈ L∞(Ω).13

The proof in the case u0, v0 ∈ Lq(Ω) is then achieved by a density argument as in the14

proof of [38, Theorem 3.2.7].15

We remark that also in the linear case, i.e. p = 2, the semigroup Tα,β
2 (t) is ultracon-16

tractive. The proof follows by adapting the techniques of [18, Theorem 2.16].17
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5 The case α ≤ β and some remarks1

We briefly comment on the case when the fractional exponents are such that α ≤ β < 1.2

In this case, the transmission conditions on Σ in the formal problem (P̃ ) read as follows:3

w̃u1 = u2 on (0, T ]× Σ, Ñu+ b|u1|p−2u1 = 0 on (0, T ]× Σ,

where w̃ ∈ Bp,p
θ (Σ) for θ ≥ γ(α) such that θ−α+β > d

p
and the operator Ñ is a linear4

and continuous operator on Bp,p
γ(β)(Σ) which is defined as in (3.1).5

We introduce the Sobolev space6

W̃α,β
p (Ω) := {u ∈ Lp(Ω) : u1 ∈ W β,p(Ω1), u2 ∈ Wα,p(Ω2) and w̃u1 = u2 on Σ}. (5.1)

which is endowed with the norm given by (1.7). This space is the effective domain of7

the following energy functional on L2(Ω):8

Φ̃α,β
p [u] :=



C2,p,β

2p

∫∫
Ω1×Ω1

|u1(x)− u1(y)|p

|x− y|βp+2
dL2(x)dL2(y) +

C2,p,α

2p

∫∫
Ω2×Ω2

|u2(x)− u2(y)|p

|x− y|αp+2
dL2(x)dL2(y)

+
1

p

∫
Σ

b|u1|p dµ if u ∈ W̃α,β
p (Ω),

+∞ if u ∈ L2(Ω) \ W̃α,β
p (Ω).

(5.2)

Moreover, we point out that (1.11) and (1.12) hold also for the space W̃α,β
p (Ω), while9

the continuous embedding (1.10) is replaced by the following10

W̃α,β
p (Ω) ↪→ Lp∗(α)(Ω). (5.3)

The functional Φ̃α,β
p enjoys the same properties of the functional Φα,β

p , namely it is

weakly lower semicontinuous, proper and convex on L2(Ω) and its subdifferential ∂Φ̃α,β
p

is single-valued.

We now study the following abstract Cauchy problem

(P )

{
∂u
∂t

+ Ãα,β
p u = f, t ∈ [0, T ]

u(0) = u0,

involving Ãα,β
p := ∂Φ̃α,β

p . As in Theorem 3.3, we can prove that the above abstract11

Cauchy problem admits a unique strong solution in the sense of Definition 3.2. In12

addition to that, we also have that the nonlinear semigroup T̃α,β
p (t) generated by −Ãα,β

p13

is strongly continuous and contractive on L2(Ω).14

By means of a suitable characterization of ∂Φ̃α,β
p analogous to the one given in Theorem15

3.6, we have that the unique strong solution of problem (P ) actually solves the following16

25



problem on Ω for a.e. t ∈ (0, T ] in the following weak sense:1

(P̃ )



∂u1

∂t
(t, x) + (−∆p)

β
Ω1
u1(t, x) = f1(t, x) for a.e. x ∈ Ω1,

∂u2

∂t
(t, x) + (−∆p)

α
Ω2
u2(t, x) = f2(t, x) for a.e. x ∈ Ω2,

w̃u1 = u2 on Σ,

⟨Ñu, v⟩+ ⟨b|u1|p−2u1, v1⟩Lp′ (Σ),Lp(Σ) = 0 ∀ v ∈ Bp,p
γ(β)(Σ),

N p′(1−α)
p u2 = 0 in (Wα− 1

p
,p(Γ))′,

u(0, x) = u0(x) in L2(Ω).

Finally, one can easily adapt all the results of Section 4 and obtain the ultracontractivity2

of T̃α,β
p (t). We state the main result for the sake of clarity.3

Theorem 5.1. Let p > 2 and αp ≤ βp < 2. If q ∈ [2,∞], then there exist two positive4

constants C1, C2 depending on α, β, p, q and Ω such that5

∥T̃α,β
p (t)u0 − T̃α,β

p (t)v0∥∞ ≤ C1(max{|Ω1|, |Ω2|})λ1(α)eC2tt−λ2(α)∥u0 − v0∥λ3(α)
q , (5.4)

for every u0, v0 ∈ Lq(Ω) and for every t > 0, where6

λ1(α) =
2− αp

2

[
1−

(
q

q + p− 2

) 2
αp

]
, λ2(α) =

1

p− 2

[
1−

(
q

q + p− 2

) 2
αp

]
,

λ3(α) =

(
q

q + p− 2

) 2
αp

.

We conclude the paper by pointing out that the results of this paper can be adapted7

to more general frameworks.8

First of all, one can replace the Koch snowflake with the so-called fractal mixtures (for9

details on such structures see e.g. [28]). Moreover, one can study fractional operators10

involving more general kernels, under suitable growth conditions.11

Finally, by proceeding as in [8], we can consider the case of a domain Ω ⊂ RN for12

N ≥ 2 such that Ω = Ω1 ∪ Ω2 ∪ Σ, where the domains Ωi are (ϵ, δ) domains satisfying13

the hypotheses of [8, Section 1.2] and Σ is a general d-set or an arbitrary closed set in14

the sense of [24].15
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(1971), 513–534.11

[6] F. Brezzi, G. Gilardi, Fundamentals of PDE for Numerical Analysis, in: Finite Element Hand-12

book (edited by H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987.13

[7] F. Cipriani, G. Grillo, Uniform bounds for solutions to quasilinear parabolic equations, J. Differ-14

ential Equations, 177 (2001), 209–234.15

[8] S. Creo, M. R. Lancia, Fractional (s, p)-Robin-Venttsel’ problems on extension domains, NoDEA16

Nonlinear Differential Equations Appl., 28 (2021), 3, Paper No. 31, 33 pp. DOI: 10.1007/s00030-17

021-00692-w18

[9] S. Creo, M. R. Lancia, P. Vernole, Convergence of fractional diffusion processes in extension19

domains, J. Evol. Equ., 20 (2020), 1, 109–139.20

[10] S. Creo, M. R. Lancia, P. Vernole, M-convergence of p-fractional energies in irregular domains,21

J. Convex Anal., 28 (2021), 2, 509–534.22

[11] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Tech-23

nology, Vol 2: Functional and Variational Methods, Springer–Verlag, Berlin, 1988.24

[12] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull.25

Sci. Math., 136 (2012), 521–573.26
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