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Abstract

We study the asymptotic behavior of anomalous fractional diffusion processes in

bad domains via the convergence of the associated energy forms. We introduce

the associated Robin-Venttsel’ problems for the regional fractional Laplacian. We

provide a suitable notion of fractional normal derivative on irregular sets via a

fractional Green formula as well as existence and uniqueness results for the solu-

tion of the Robin-Venttsel’ problem by a semigroup approach. Submarkovianity

and ultracontractivity properties of the associated semigroup are proved.
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Introduction

In this paper we study a heat equation for the regional fractional Laplacian with Robin

(Venttsel’) boundary conditions in irregular domains (e.g. Jones domains [20]). This

type of problems belongs to the large class of anomalous diffusion processes. In the

recent years there has been an increasing interest in their study due to the different

application fields.
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The anomalous diffusion is an important topic in physics, finance and probability

([1, 19, 36, 38]; for a tutorial see [40]). Mathematically it is described by a nonlocal

operator. Several models appear in the literature to describe such diffusion, e.g. the

fractional Brownian motion, the continuous time random walk, the Lévy flight as well

as random walk models based on evolution equations of single and distributed fractional

order in time and/or space [8, 15, 35, 38, 39].

In these different frameworks, if the regional fractional Laplacian is considered (see

(2.1)), the corresponding diffusion processes take place across irregular interfaces or

boundaries, possibly of fractal type. A key point is to give a rigorous mathematical

formulation for these processes as well as to study their “smoother approximations” in

view of concrete numerical simulations.

In the literature, results for boundary value problems for the regional fractional Lapla-

cian with Dirichlet, Neumann and more general non-standard boundary conditions,

such as dynamical boundary conditions of Venttsel’ or Robin type for piecewise smooth

(Lipschitz) domains, can be found in [12], [13] and [14] along with the physical moti-

vations.

To our knowledge, the case of Robin-Venttsel’ problems for the regional fractional

Laplacian in irregular domains (studied e.g. for second order elliptic operators in

divergence form in [33]) is here investigated for the first time.

Our aim, in this paper, is twofold; the former is to give a rigorous formulation of

a parabolic problem for the regional fractional Laplacian with dynamical boundary

conditions in irregular domains and in suitable smoother approximating domains. The

latter is to prove that the approximating processes converge in a suitable sense to the

diffusion process of the irregular case.

More precisely, in this paper we consider the following evolution problems for the

regional fractional Laplacian with dynamical Robin-Venttsel’ boundary conditions in

an irregular domain Q as well as in the corresponding approximating domains Qn.

The problems can be formally stated as:

(P̃ )


∂u
∂t

(t, x) + (−∆)sQu(t, x) = f(t, x) in (0, T ]×Q,
∂(u|∂Q)

∂t
+N2−2su+ bu|∂Q = f on (0, T ]× ∂Q,

u(0, x) = u0(x) in Q,

and, for every n ∈ N,
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(P̃n)


∂un
∂t

(t, x) + (−∆)sQnun(t, x) = fn(t, x) in (0, T ]×Qn,

δn
∂(un|∂Qn )

∂t
+N2−2sun + δnbun|∂Qn = δnfn on (0, T ]× ∂Qn,

un(0, x) = u
(n)
0 (x) in Qn,

where Q is a bounded (ε, δ) domain having as boundary a d-set (see Definitions 1.1

and 1.2) possibly of fractal type and {Qn} is a sequence of suitable smooth domains

approximating Q. Here (−∆)sQ and (−∆)sQn denote the regional fractional Laplacians

(see (2.1)), s ∈ (0, 1), N2−2su is the fractional normal derivative to be suitably defined,

f , fn, b, u0 and u
(n)
0 are given functions, while T and δn are positive numbers.

We introduce a suitable notion of fractional normal derivative on irregular sets, via a

generalized fractional Green formula, and we prove that it is an element of the dual of

a suitable Besov space defined on ∂Q (see Theorem 2.2).

We consider the fractional energy form Es defined in (3.2), which turns out to be a

closed nonlocal Dirichlet form in L2(Q,m) (see (3.1)), and the corresponding associated

generator As. In Theorem 4.1 we prove, via a semigroup approach, existence and

uniqueness of a classical solution for a suitable abstract Cauchy problem (P ) for the

operator As. We prove regularity properties of the semigroup, i.e. markovianity, order

preserving and ultracontractivity in Theorems 3.5 and 3.6. In Theorem 4.2 we prove

that problem (P̃ ) is the strong formulation of the abstract problem (P ). Similar results

for the approximating problems (P̃n) hold.

In order to study the asymptotic behavior of the approximating solutions, we consider

the case of a three-dimensional Koch-type cylinder Q and its corresponding polyhedral

approximating domains Qn. We consider the fractional energy forms Es and E
(n)
s on

L2(Q,m) and L2(Q,mn) respectively (see (5.4) and (5.7)). In the pre-fractal case, exis-

tence and uniqueness of a classical solution of the associated abstract Cauchy problem

(Pn) as well as a strong interpretation are given respectively in Theorems 5.2 and 5.3.

In the fractal case, these results follow from Theorems 4.1 and 4.2 specialized to this

case. In Theorem 7.3 we study the asymptotic behavior of the solutions of problems

(Pn); the functional setting is that of varying Hilbert spaces (see Section 1.2). The

Mosco-Kuwae-Shioya convergence of the fractional energy forms, proved in Theorem

6.5, and that of semigroups, given in Theorem 6.6, yield the convergence of the so-

lutions in a suitable sense. The choice of the factor δn, which accounts for the jump

of dimension between ∂Q and ∂Qn, is crucial in the proof of the energy convergence.

Finally, in Theorems 7.6 and 7.9, we prove the convergence of the time derivatives and

the convergence of the fractional normal derivatives in a suitable weak sense.

The plan of the paper is the following.
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In Section 1, we recall some preliminary results on traces and varying Hilbert spaces.

In Section 2, we recall the definition of fractional regional Laplacian and we introduce

the notion of weak fractional normal derivative by proving a generalized fractional

Green formula for irregular domains.

In Section 3 we introduce the nonlocal fractional energy form on Q. We prove that

it is closed, symmetric and Markovian and that the associated semigroup is positive

preserving, L∞-contractive and ultracontractive.

In Section 4 we prove existence and uniqueness of a classical solution for the corre-

sponding abstract Cauchy problem and we give a strong interpretation.

In Section 5 we consider as Q a Koch-type cylinder, i.e. Q = Ω× [0, 1], where Ω is the

snowflake domain. We introduce the corresponding approximating domains Qn, the

corresponding fractional energy forms E
(n)
s defined in (5.6), the associated semigroups

and Cauchy problems.

In Section 6 we recall the notion of Mosco-Kuwae-Shioya convergence of the forms and

we prove the M-convergence of the energy forms E
(n)
s to Es.

In Section 7 we prove the convergence of the solutions in the framework of varying

Hilbert spaces as well as the convergence of the time derivatives. The convergence of

the fractional normal derivative is then achieved in a suitable weak sense.

1 Preliminaries

1.1 Functional spaces and trace theorems

Let G (resp. S) be an open (resp. closed) set of RN . By L2(G) we denote the Lebesgue

space with respect to the Lebesgue measure dLN , which will be left to the context

whenever that does not create ambiguity. By Lp(∂G, µ) we denote the Lebesgue space

on ∂G with respect to a Hausdorff measure µ supported on ∂G. By D(G) we denote

the space of infinitely differentiable functions with compact support on G. By C(S)

we denote the space of continuous functions on S.

By Hs(G), where 0 < s < 1, we denote the fractional Sobolev space of exponent s.

Endowed with the following norm

‖u‖2
Hs(G) = ‖u‖2

L2(G) +

∫∫
G×G

(u(x)− u(y))2

|x− y|N+2s
dLN(x)dLN(y),

it becomes a Banach space. We denote by |u|Hs(G) the seminorm associated to ‖u‖Hs(G)

and by (u, v)Hs(G) the scalar product induced by the Hs-norm. Moreover, we set

(u, v)s :=

∫∫
G×G

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dLN(x)dLN(y).
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In the following we will denote by |A| the Lebesgue measure of a measurable subset

A ⊂ RN . For f in Hs(G), we define the trace operator γ0 as

γ0f(x) := lim
r→0

1

|B(x, r) ∩ G|

∫
B(x,r)∩G

f(y) dLN(y) (1.1)

at every point x ∈ G where the limit exists. The limit (1.1) exists at quasi every x ∈ G
with respect to the (s, 2)-capacity (see [2], Defnition 2.2.4 and Theorem 6.2.1 page

159). In the sequel we will omit the trace symbol and the interpretation will be left to

the context.

We now recall the definition of (ε, δ) domain. For details see [20].

Definition 1.1. Let F ⊂ RN be open and connected. For x ∈ F , let d(x) := inf
y∈Fc
|x−

y|. We say that F is an (ε, δ) domain if, whenever x, y ∈ F with |x − y| < δ, there

exists a rectifiable arc γ ∈ F joining x to y such that

`(γ) ≤ 1

ε
|x− y| and d(z) ≥ ε|x− z||y − z|

|x− y|
for every z ∈ γ.

In this paper, we consider two particular classes of (ε, δ) domains Q ⊂ RN . More

precisely, Q can be a (ε, δ) domain having as boundary either a d-set or an arbitrary

closed set in the sense of [21]. For the sake of completeness, we recall the definition of

d-set given in [22].

Definition 1.2. A closed nonempty set M ⊂ RN is a d-set (for 0 < d ≤ N) if there

exist a Borel measure µ with suppµ = M and two positive constants c1 and c2 such

that

c1r
d ≤ µ(B(x, r) ∩M) ≤ c2r

d ∀x ∈M. (1.2)

The measure µ is called d-measure.

We recall the definition of Besov spaces on an arbitrary closed set F̃ specialized to our

case. For generalities on these Besov spaces, we refer to [21]. Let us suppose that there

is a measure µF̃ on F̃ satisfying the following condition: for 0 < d1 ≤ d2 ≤ N , there

exist two positive constants c̃1 and c̃2 such that

c̃1 k
d1µF̃(B(x, r)) ≤ µF̃(B(x, kr)) ≤ c̃2 k

d2µF̃(B(x, r)) (1.3)

for all x ∈ F̃ , r > 0, k ≥ 1 such that kr ≤ 1.

Definition 1.3. Let F̃ ⊂ RN be an arbitrary closed set and µF̃ be a measure defined

on F̃ satisfying (1.3). The Besov space B̃2,2
γ (F̃) with respect to µF̃ is the space of

functions such that the following norm is finite:

|||u|||2
B̃2,2
γ (F̃)

= ‖u‖2
L2(F̃)

+
+∞∑
j=0

3j(2γ−N)

∫∫
|x−y|<3−j

|u(x)− u(y)|2

mj(x)mj(y)
dµF̃(x) dµF̃(y), (1.4)
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where mj(x) := µF̃(B(x, 3−j)).

From Proposition 2 in [21], it follows that this norm is equivalent to the following norm:

‖u‖2
B̃2,2
γ (F̃)

= ‖u‖2
L2(F̃)

+

∫∫
|x−y|<1

|u(x)− u(y)|2

|x− y|2γ−N(µF̃(B(x, |x− y|)))2
dµF̃(x) dµF̃(y). (1.5)

For further purposes we state a trace theorem for functions in Hs(Q) where Q is a

bounded (ε, δ) domain with boundary ∂Q an arbitrary closed set satisfying (1.3) (see

Theorem 1 in [21]).

Proposition 1.4. Let 1
2
< s < 1. B̃2,2

s (∂Q) is the trace space of Hs(Q) in the following

sense:

(i) γ0 is a continuous linear operator from Hs(Q) to B̃2,2
s (∂Q);

(ii) there exists a continuous linear operator Ext from B̃2,2
s (∂Q) to Hs(Q) such that

γ0 ◦ Ext is the identity operator in B̃2,2
s (∂Q).

By (B̃2,2
s (∂Q))′ we denote the dual space of B̃2,2

s (∂Q), see [23].

In order for the trace to be well defined, from now on we suppose that

1

2
< s < 1.

1.2 Varying Hilbert spaces

In this subsection, we introduce the notion of convergence of varying Hilbert spaces.

We refer to [26] and [25] for definitions and proofs. The Hilbert spaces we consider are

real and separable.

Definition 1.5. A sequence of Hilbert spaces {Hn}n∈N converges to a Hilbert space

H if there exists a dense subspace C ⊂ H and a sequence {Zn}n∈N of linear operators

Zn : C ⊂ H → Hn such that

lim
n→∞

‖Znu‖Hn = ‖u‖H for any u ∈ C.

We set H = {∪nHn} ∪H and define strong and weak convergence in H. From now on

we assume that {Hn}n∈N, H and {Zn}n∈N are as in Definition 1.5.

Definition 1.6 (Strong convergence in H). A sequence of vectors {un}n∈N strongly

converges to u in H if un ∈ Hn, u ∈ H and there exists a sequence {ũm}m∈N ∈ C

tending to u in H such that
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lim
m→∞

lim
n→∞

‖Znũm − un‖Hn = 0.

Definition 1.7 (Weak convergence in H). A sequence of vectors {un}n∈N weakly con-

verges to u in H if un ∈ Hn, u ∈ H and

(un, vn)Hn → (u, v)H

for every sequence {vn}n∈N strongly tending to v in H.

We remark that the strong convergence implies the weak convergence (see [26]).

Lemma 1.8. Let {un}n∈N be a sequence weakly converging to u in H. Then

sup
n
‖un‖Hn <∞, ‖u‖H ≤ lim

n→∞
‖un‖Hn .

Moreover, un → u strongly if and only if ‖u‖H = lim
n→∞
‖un‖Hn.

Let us recall some characterizations of the strong convergence of a sequence of vectors

{un}n∈N in H.

Lemma 1.9. Let u ∈ H and let {un}n ∈ N be a sequence of vectors un ∈ Hn. Then

{un}n∈N strongly converges to u in H if and only if

(un, vn)Hn → (u, v)H

for every sequence {vn}n∈N with vn ∈ Hn weakly converging to a vector v in H.

Lemma 1.10. A sequence of vectors {un}n∈N with un ∈ Hn strongly converges to a

vector u in H if and only if

‖un‖Hn → ‖u‖H and

(un, Zn(ϕ))Hn → (u, ϕ)H for every ϕ ∈ C.

Lemma 1.11. Let {un}n∈N be a sequence with un ∈ Hn. If ‖un‖Hn is uniformly

bounded, then there exists a subsequence of {un}n∈N which weakly converges in H.

Lemma 1.12. For every u ∈ H there exists a sequence {un}n∈N, with un ∈ Hn, strongly

converging to u in H.

We now introduce the notion of strong convergence of operators. We denote by L(X)

the space of linear and continuous operators on a Hilbert space X.

Definition 1.13. A sequence of bounded operators {Bn}n∈N, with Bn ∈ L(Hn),

strongly converges to an operator B ∈ L(H) if for every sequence of vectors {un}n∈N
with un ∈ Hn strongly converging to a vector u in H, the sequence {Bhuh} strongly

converges to Bu in H.
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2 The regional fractional Laplacian and the Green

formula

We introduce the so-called “ regional” fractional Laplacian, for the defnition we refer

to [3, 4, 16, 17, 18].

Let s ∈ (0, 1). We define the space

L1
s(G) :=

u : G → R measurable :

∫
G

|u(x)|
(1 + |x|)N+2s

dLN(x) <∞

 .

The regional fractional Laplacian (−∆)sG is defined as follows, for x ∈ G:

(−∆)sGu(x) = CN,sP.V.

∫
G

u(x)− u(y)

|x− y|N+2s
dLN(y) = CN,s lim

ε→0+

∫
{y∈G : |x−y|>ε}

u(x)− u(y)

|x− y|N+2s
dLN(y),

(2.1)

provided that the limit exists for every function u ∈ L1
s(G). The positive constant CN,s

is defined as follows:

CN,s =
s22sΓ(N+2s

2
)

π
N
2 Γ(1− s)

,

where Γ is the Euler function.

We refer to the Introductions of [12] and [14] for detailed discussions on the relation

between the fractional Laplacian and the regional fractional Laplacian (see e.g. Section

2 in [12]).

We now give a suitable definition of fractional normal derivative on non-smooth do-

mains. In the literature (see [14]) there are different definitions of fractional normal

derivatives on Lipschitz domains. Our aim is to prove a fractional Green formula, in-

spired by Definition 2.9 (b) of [14], for (ε, δ) domains Q with fractal boundary. A key

tool is the use of a limit argument. More precisely, Q is approximated by an increasing

sequence of non-convex domains Qn with Lipschitz boundary.

Definition 2.1. Let T ⊂ RN be a Lipschitz domain. Let u ∈ V ((−∆)sT , T ) := {u ∈
Hs(T ) : (−∆)sT u ∈ L2(T ) in the sense of distributions}. We say that u has a weak

fractional normal derivative in (Hs− 1
2 (∂T ))′ if there exists g ∈ (Hs− 1

2 (∂T ))′ such that

〈g, v〉
(Hs− 1

2 (∂T ))′,Hs− 1
2 (∂T )

= −
∫
T

(−∆)sT u v dLN (2.2)

+
CN,s

2

∫∫
T ×T

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dLN(x)dLN(y)
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for every v ∈ Hs(T ). In this case, g is uniquely determined and we call CsN2−2su := g

the weak fractional normal derivative of u, where

Cs :=
C1,s

2s(2s− 1)

∞∫
0

|t− 1|1−2s − (t ∨ 1)1−2s

t2−2s
dt.

We point out that, when s → 1− in (2.2), we recover the usual Green formula for

Lipschitz domains.

We now prove a “fractional” Green formula for (ε, δ) domains Q having as boundary

∂Q a closed set supporting a Borel measure satisfying (1.3). We suppose that Q can

be approximated by a sequence {Qn} of domains such that for every n ∈ N:

1) Qn is bounded and Lipschitz;

2) Qn ⊆ Qn+1;

3) Q =
∞⋃
n=1

Qn.

We define the space

V ((−∆)sQ, Q) := {u ∈ Hs(Q) : (−∆)sQu ∈ L2(Q) in the sense of distributions},

which is a Banach space when equipped with the norm

‖u‖2
V ((−∆)sQ,Q) := ‖u‖2

Hs(Q) + ‖(−∆)sQu‖2
L2(Q).

Theorem 2.2 (Fractional Green formula). There exists a bounded linear operator

N2−2s from V ((−∆)sQ, Q) to (B̃2,2
s (∂Q))′.

The following generalized Green formula holds for all u ∈ V ((−∆)sQ, Q):

Cs 〈N2−2su, v〉(B̃2,2
s (∂Q))′,B̃2,2

s (∂Q) = −
∫
Q

(−∆)sQu v dLN +
CN,s

2
(u, v)s, v ∈ Hs(Q).

(2.3)

Proof. For u ∈ V ((−∆)sQ, Q) and v ∈ Hs(Q), we define

〈l(u), v〉 := −
∫
Q

(−∆)sQu v dLN +
CN,s

2
(u, v)s.

From Cauchy-Schwarz Theorem and trace results we get

| 〈l(u), v〉| ≤ ‖(−∆)sQu‖L2(Q)‖v‖L2(Q) +
CN,s

2
‖u‖Hs(Q)‖v‖Hs(Q)

≤ c ‖u‖V ((−∆)sQ,Q)‖v‖Hs(Q) ≤ c ‖u‖V ((−∆)sQ,Q)‖v‖B̃2,2
s (∂Q).
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This shows in particular that the operator is independent from the choice of v and it

is an element of the dual space of B̃2,2
s (∂Q).

We now consider the sequence of domains Qn satisfying the properties 1)-2)-3) above.

We recall that for Lipschitz domains, the trace space of Hs(Qn), for 1
2
< s < 1,

is Hs− 1
2 (∂Qn). On these Lipschitz domains, by (2.2) the following fractional Green

formula holds:

Cs 〈N2−2su, v〉(Hs− 1
2 (∂Qn))′,Hs− 1

2 (∂Qn)
= −

∫
Q

χQn(−∆)sQu v dLN

+
CN,s

2

∫∫
Q×Q

χQn(x)χQn(y)
(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dLN(x)dLN(y).

From the dominated convergence theorem, we have

lim
n→∞

Cs 〈N2−2su, v〉(Hs− 1
2 (∂Qn))′,Hs− 1

2 (∂Qn)

= lim
n→∞

−∫
Qn

(−∆)sQu v dLN +
CN,s

2

∫∫
Qn×Qn

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dLN(x)dLN(y)


= −

∫
Q

(−∆)sQu v dLN +
CN,s

2
(u, v)s = 〈l(u), v〉

for every u ∈ V ((−∆)sQ, Q) and v ∈ Hs(Q). Hence, we define the fractional normal

derivative on Q as

〈CsN2−2su, v〉(B̃2,2
s (∂Q))′,B̃2,2

s (∂Q) := −
∫
Q

(−∆)sQu v dLN +
CN,s

2
(u, v)s.

Remark 2.3. We remark that, when s → 1− in (2.3), we recover the Green formula

stated in [32] for fractal domains.

Let u ∈ V (−∆, Q) := {u ∈ H1(Q) : −∆u ∈ L2(Q) in the sense of distributions} and

v ∈ H1(Q). It holds that

lim
s→1−

∫
Q

(−∆)sQu v dLN =

∫
Q

∇u∇v dLN .

As first step, we take v = u and u ∈ C∞(Q). In particular then u ∈ C∞(Qn) for every

n and N2−2su = 0 on ∂Qn pointwise. From Theorem 2.2 we have

lim
s→1−

∫
Q

χQnu (−∆)sQu dLN = lim
s→1−

(1− s)CN,s
2(1− s)

∫∫
Qn×Qn

(u(x)− u(y))2

|x− y|N+2s
dLN(x)dLN(y).

(2.4)
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Since the limit in the right-hand side of (2.4) is equal to

∫
Qn

|∇u|2 dLN , passing to the

limit as n→ +∞ we get

lim
n→+∞

lim
s→1−

∫
Q

χQnu (−∆)sQu dLN = lim
n→+∞

∫
Qn

|∇u|2 dLN =

∫
Q

|∇u|2 dLN .

By density arguments we get the claim.

3 Energy forms and semigroups

We denote by L2(Q,m) the Lebesgue space with respect to the measure

dm = dLN + dµ, (3.1)

where µ satisfies (1.3) on ∂Q. We endow L2(Q,m) with the following norm:

‖u‖2
L2(Q,m) = ‖u‖2

L2(Q) + ‖u‖2
L2(∂Q,µ).

Let b ∈ C(Q) be a strictly positive continuous function on Q. We define the following

energy functional for every u ∈ Hs(Q):

Es[u] =
CN,s

2
|u|2Hs(Q)+

∫
∂Q

b|u|2 dµ =
CN,s

2

∫∫
Q×Q

(u(x)− u(y))2

|x− y|N+2s
dLN(x)dLN(y)+

∫
∂Q

b|u|2 dµ.

(3.2)

Proposition 3.1. Es[u] is closed on L2(Q,m).

Proof. We have to prove that for every sequence {uk} ⊆ Hs(Q) such that

Es[uk − uj] + ‖uk − uj‖L2(Q,m) → 0 for k, j → +∞. (3.3)

there exists u ∈ Hs(Q) such that

Es[uk − u] + ‖uk − u‖L2(Q,m) → 0 for k → +∞.

(3.3) states that {uk} is a Cauchy sequence in L2(Q,m) and, since L2(Q,m) is a Banach

space, there exists u ∈ L2(Q,m) such that

‖uk − u‖L2(Q,m) −−−−→
k→+∞

0.

This immediately implies that ∫
∂Q

b|uk − u|2 dµ −−−−→
k→+∞

0
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since b is a continuous function. Moreover, since |uk − uj|Hs(Q) + ‖uk − uj‖L2(Q) is

equivalent to the Hs(Q)-norm of uk− uj, (3.3) implies that {uk} is a Cauchy sequence

also in Hs(Q). Since Hs(Q) is a Banach space, then also |uk − u|2Hs(Q) → 0 when

k → +∞.

We define the bilinear form associated to the energy form Es[u] as follows: for every

u, v ∈ Hs(Q)

Es(u, v) =
CN,s

2
(u, v)s +

∫
∂Q

b u v dµ.

The following result follows from [24].

Theorem 3.2. For every u, v ∈ Hs(Q), Es(u, v) is a closed symmetric bilinear form on

L2(Q,m). Then there exists a unique self-adjoint non-positive operator As on L2(Q,m)

such that

Es(u, v) = (−Asu, v)L2(Q,m) ∀u ∈ D(As), ∀ v ∈ Hs(Q), (3.4)

where D(As) ⊂ Hs(Q) is the domain of As and it is dense in L2(Q,m).

Moreover, since Es[u] is closed, by proceeding as in Section 3 in [11], we prove that As

is the generator of a strongly continuous semigroup {Ts(t)}t≥0 on L2(Q,m).

Proposition 3.3. Es[u] is Markovian on L2(Q,m), hence the semigroup Ts(t) gener-

ated by As is Markovian.

Proof. Since Es[u] is closed, it is sufficient to prove (see [11]) that for every strictly

positive u ∈ Hs(Q), the function v := u ∧ 1 ∈ Hs(Q) and the following holds

Es[v] ≤ Es[u].

The result trivially follows for the boundary term in Es; as to the other term, the result

follows from Lemma 2.7 in [41].

We now prove some properties of the semigroup generated by As, following [14].

For the sake of completeness, we recall some definitions.

Definition 3.4. Let X be a locally compact metric space and µ̃ be a Radon measure

on X. Let {T (t)}t≥0 be a strongly continuous semigroup on L2(X, µ̃). The semigroup

is positive preserving if for every non-negative u ∈ L2(X, µ̃)

T (t)u ≥ 0 ∀ t ≥ 0.

The semigroup is L∞-contractive if for every t ≥ 0

‖T (t)u‖L∞(X,µ̃) ≤ ‖u‖L∞(X,µ̃) ∀u ∈ L2(X, µ̃) ∩ L∞(X, µ̃).
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Theorem 3.5. The semigroup {Ts(t)}t≥0 generated by As is submarkovian on

L2(Q,m), i.e. it is positive preserving and L∞-contractive.

Proof. The L∞-contractivity follows from Theorem 1.4.1 in [11]. In order to prove that

it is positive preserving, we follow the proof of Proposition 2.14 in [14]. We prove that

Es[|u|] ≤ Es[u] for every u ∈ Hs(Q); this condition is trivially fulfilled for the boundary

term.

By recalling that u = u+ − u− and |u| = u+ + u−, where u+ and u− are respectively

the positive and negative part of u, the above condition reads as follows:

Es[u
+ + u−] ≤ Es[u

+ − u−] (3.5)

From Lemma 2.5 in [41] it follows that, if u ∈ Hs(Q), then u+ and u− also belong to

Hs(Q). This implies that |u| ∈ Hs(Q). It holds that

(|u|, |u|)s =

∫∫
Q×Q

(|u|(x)− |u|(y))2

|x− y|N+2s
dLN(x)dLN(y) =

∫∫
Q×Q

(u+(x)− u+(y))2

|x− y|N+2s
dLN(x)dLN(y)

+

∫∫
Q×Q

(u−(x)− u−(y))2

|x− y|N+2s
dLN(x)dLN(y) + 2(u+, u−)s.

Analogously, by calculation it follows that

(u, u)s =

∫∫
Q×Q

(u+(x)− u+(y))2

|x− y|N+2s
dLN(x)dLN(y)+

∫∫
Q×Q

(u−(x)− u−(y))2

|x− y|N+2s
dLN(x)dLN(y)−2(u+, u−)s.

Hence condition (3.5) can be written as follows

(u+, u−)s ≤ 0,

which is true by inspection. From Theorem 1.3.2 in [7], this implies that the semigroup

is positive preserving.

Theorem 3.6. Let λ1 > 0 be the first eigenvalue of −As. The semigroup {Ts(t)}t≥0 is

ultracontractive, i.e. Ts(t) : L2(Q,m) → L∞(Q,m). Moreover, for every 1 ≤ q ≤ p ≤
∞ there exists a positive constant C such that ∀u ∈ Lq(Q,m) and for every t > 0

‖Ts(t)u‖Lp(Q,m) ≤ Ce−λ1( 1
q
− 1
p

)tt−
N
2s‖u‖Lq(Q,m). (3.6)

Proof. The proof follows from Theorem 2.16 in [14] with small suitable changes.
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4 The evolution problems

In order to study the problems (P̃ ) and (P̃n) stated in the Introduction, we first consider

the following abstract Cauchy problem, for T > 0 fixed:

(P )

u′(t) = Asu(t) + f(t) for t ∈ (0, T ],

u(0) = u0,
(4.1)

where f and u0 are given functions in suitable spaces and As is the operator associated

to the energy form Es. From semigroup theory we get the following existence and

uniqueness result.

Theorem 4.1. Let α ∈ (0, 1), f ∈ C0,α([0, T ];L2(Q,m)) and u0 ∈ D(As). We define

u(t) = Ts(t)u0 +

t∫
0

Ts(t− τ) f(τ) dτ, (4.2)

where Ts(t) is the semigroup generated by the operator As. Then u defined in (4.2) is the

unique classical solution of problem (P ), i.e. a function u such that u′(t) = Asu(t)+f(t)

for all t ∈ (0, T ], u(0) = u0 and

u ∈ C1((0, T ];L2(Q,m)) ∩ C((0, T ];D(As)) ∩ C([0, T ];L2(Q,m)).

Moreover, the following estimate holds:

‖u‖C((0,T ];L2(Q,m)) ≤ C(‖u0‖L2(Q,m) + ‖f‖C0,α([0,T ];L2(Q,m))).

For the proof see Theorem 4.3.1 and Corollary 4.2.4 in [34]. We now give a strong

interpretation of the abstract Cauchy problem (P ).

Theorem 4.2. Let u be the unique solution of problem (P ). Then, for every t ∈ (0, T ],

it holds that 
∂u
∂t

(t, x) + (−∆)sQu(t, x) = f(t, x) for a.e. x ∈ Q,

∂u
∂t

+ CsN2−2su+ bu = f in (B̃2,2
s (∂Q))′,

u(0, x) = u0(x) in Q.

(4.3)

Proof. For every fixed t ∈ (0, T ], we multiply the first equation of problem (P ) by a

test function ϕ ∈ D(Q) and then we integrate on Q. Then from (3.4) we obtain
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∫
Q

∂u

∂t
ϕ dLN =

∫
Q

Asuϕ dLN +

∫
Q

f ϕ dLN = −Es(u, ϕ) +

∫
Q

f ϕ dLN .

Since ϕ has compact support in Q, after integrating by parts, we get

∂u

∂t
+ (−∆)sQu = f in (D(Q))′. (4.4)

By density, equation (4.4) holds in L2(Q), so it holds for a.e. x ∈ Q. We remark that

from this it follows that, for each fixed t ∈ (0, T ], u ∈ V ((−∆)sQ, Q). Hence, we can

apply Green formula (2.3).

We now take the scalar product in L2(Q,m) between the first equation of problem (P )

and ϕ ∈ Hs(Q). Hence we get(
∂u

∂t
, ϕ

)
L2(Q,m)

= (Asu, ϕ)L2(Q,m) + (f, ϕ)L2(Q,m). (4.5)

Again by using (3.4), we have that∫
Q

∂u

∂t
ϕ dLN +

∫
∂Q

∂u

∂t
ϕ dµ = −CN,s

2

∫∫
Q×Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dLN(x)dLN(y)−∫

∂Q

b uϕ dµ+

∫
Q

f ϕ dLN +

∫
∂Q

f ϕ dµ.

Using (2.3) and (4.4), we obtain for every ϕ ∈ Hs(Q) and for each t ∈ (0, T ]∫
∂Q

∂u

∂t
ϕ dµ = −〈CsN2−2su, ϕ〉 −

∫
∂Q

b uϕ dµ+

∫
∂Q

f ϕ dµ. (4.6)

Hence the boundary condition holds in (B̃2,2
s (∂Q))′.

We point out that, by introducing the Lebesgue space L2(Q,mn) with respect to the

measure

dmn = χQndLN + χ∂QndLN−1 (4.7)

and the energy functional E
(n)
s [u], for u ∈ Hs(Q), with the obvious changes, the pre-

vious results hold also for the approximating domains Qn introduced in Section 2.

In particular, since the Lipschitz boundary ∂Qn is a (N − 1)-set, we can define the

fractional normal derivative N2−2su on ∂Qn as an element of (Hs− 1
2 (∂Qn))′.

5 The fractal problem

We now consider a particular (ε, δ) domain Q and its approximating Lipschitz domains

Qn. We will study problems (P̃ ) and (P̃n) specialized to this case. A crucial problem
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is to understand whether the solutions of these problems exist and in which sense they

can be approximated. This is a step towards the numerical approximation, which will

be object of a further research.

We consider the case of a “fractal cylinder” of Koch type. More precisely, Q denotes

the open bounded set defined as the Cartesian product of the snowflake domain Ω and

the unit interval; the “lateral surface” S is the product of the Koch snowflake F and

I = [0, 1], and the bases are the sets Ω × {0} and Ω × {1} (see Figure 1). For details

on the fractal sets, see [31].

Figure 1: The fractal domain Q.

We introduce on S the measure

dg = dµ× dL1, (5.1)

where µ is the df -normalized Hausdorff measure on F (see [9, 10]), df := ln 4
ln 3

is the

Hausdorff dimension of F and L1 is the one-dimensional Lebesgue measure on I. We

remark that S is a (df + 1)-set, while the boundary ∂Q = S ∪ (Ω × {0}) ∪ (Ω × {1})
is neither a 2-set nor a (df + 1)-set; ∂Q is a closed set of R3. We define the measure µ̃

supported on ∂Q as

dµ̃ = χSdg + χΩ̃dL2,

where Ω̃ = (Ω× {0}) ∪ (Ω× {1}). The measure µ̃ satisfies condition (1.3) with d1 = 2

and d2 = df + 1.

On this domain, we consider the following problem:

∂u
∂t

+ (−∆)sQu = f in Q,

∂u
∂t

+ CsN2−2su+ bu = f on S,

u = 0 on Ω̃,

u(0, x) = u0(x) in Q.

(5.2)
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Since we are considering mixed boundary conditions, by proceeding as in [27] and

following the patterns of Theorem 2.2, we can prove a fractional Green formula which

in turn allows to prove that N2−2su ∈ (B2,2
η,0(S))′, where

B2,2
η,0(S) = {w ∈ L2(S) : ∃ v ∈ Hs(Q) s.t. v = 0 on Ω̃ and γ0v = w on S}.

The fractal energy functional is defined as follows:

Es[u] =
C3,s

2

∫∫
Q×Q

(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y) +

∫
S

b|u|2 dg, (5.3)

with domain

D(Es) := {u ∈ Hs(Ω) : u = 0 on Ω̃}.

We define the measure

dm = dL3 + dg. (5.4)

The following result holds, by proceeding as in Section 3.

Proposition 5.1. The energy form Es with domain D(Es) is closed in L2(Q,m).

Following the patterns of Section 3, with the obvious changes, it can be proved that

the solution of the abstract Cauchy problem associated with the generator −As of the

form (Es,D(Es)) solves the following problem for every t ∈ (0, T ]:

(P̄ )



∂u
∂t

(t, x) + (−∆)sQu(t, x) = f(t, x) for a.e. x ∈ Q,

∂u
∂t

+ CsN2−2su+ bu = f in (B2,2
η,0(S))′,

u(t, x) = 0 in Hs− 1
2 (Ω̃),

u(0, x) = u0(x) in L2(Q,m),

(5.5)

where η := s− 1 +
df
2
> 0.

The fractal domain Q can be approximated by a sequence of invading Lipschitz domains

{Qn}n∈N; these sets are the so-called pre-fractal domains, and they satisfy the assump-

tions 1)-2)-3) of Section 2. These pre-fractal sets have as lateral surface Sn = Fn × I,

where Fn is the n-th approximation of the Koch snowflake F ; since Fn is Lipschitz, we

can define in a natural way the arc length ` on Fn. For details on the construction of

Qn, see [31].

We consider now the approximating pre-fractal energy functionals E
(n)
s for every n ∈ N:

E(n)
s [u] =

C3,s

2

∫∫
Q×Q

χQn(x)χQn(y)
(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y) + δn

∫
Sn

b|u|2 dσ, (5.6)
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where dσ = d`×dL1 is the measure on every affine face of Sn and δn is a fixed positive

parameter, with domain

D(E(n)
s ) := {u ∈ Hs(Q) : u = 0 on Ω̃n},

where Ω̃n = (Ωn × {0}) ∪ (Ωn × {1}).
By E

(n)
s (u, v) we denote the bilinear form induced by the quadratic form E

(n)
s [u] in the

obvious way. Following the patterns of Section 3, we can prove that for every n ∈ N the

energy functional E
(n)
s enjoys the same properties of the functional Es as in Proposition

5.1; in particular, if we denote by L2(Q,mn) the Lebesgue space with respect to the

measure

dmn = χQndL3 + χSnδndσ, (5.7)

we can prove that there exists a unique self-adjoint non-positive operator A
(n)
s on

L2(Q,mn) having domain D(A
(n)
s ) ⊂ D(E

(n)
s ) dense in L2(Q,mn) such that

E(n)
s (u, v) = (−A(n)

s u, v)L2(Q,mn) ∀u ∈ D(A(n)
s ),∀ v ∈ D(E(n)

s ). (5.8)

Moreover, this operator is the generator of a strongly continuous semigroup {T (n)
s (t)}t≥0

on L2(Q,mn), which as in the fractal case is submarkovian on L2(Q,mn) and ultra-

contractive.

We now consider, for every n ∈ N, the following abstract Cauchy problem:

(Pn)

u′n(t) = A
(n)
s un(t) + fn(t) for t ∈ (0, T ],

un(0) = u
(n)
0 .

(5.9)

The following analogue of Theorem 4.1 holds in the pre-fractal case.

Theorem 5.2. Let α ∈ (0, 1), fn ∈ C0,α([0, T ];L2(Q,mn)) and u
(n)
0 ∈ D(A

(n)
s ). We

define

un(t) = T (n)
s (t)u

(n)
0 +

t∫
0

T (n)
s (t− τ) fn(τ) dτ, (5.10)

where T
(n)
s (t) is the semigroup generated by the operator A

(n)
s . Then un defined in

(5.10) is the unique classical solution of problem (Pn), i.e. u′n(t) = A
(n)
s un(t) + fn(t)

for all t ∈ (0, T ], un(0) = u
(n)
0 and

un ∈ C1((0, T ];L2(Q,mn)) ∩ C((0, T ];D(A
(n)
s )) ∩ C([0, T ];L2(Q,mn)).

Moreover, the following estimate holds:

‖un‖C((0,T ];L2(Q,mn)) ≤ C(‖u(n)
0 ‖L2(Q,mn) + ‖fn‖C0,α([0,T ];L2(Q,mn))), (5.11)
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where C is a constant independent of n.

We introduce the space

H
s− 1

2
0,0 (Sn) = {u ∈ L2(Sn) : ∃ v ∈ Hs(Ω) s.t. v = 0 on Ω̃ and γ0v = u on Sn}.

By proceeding as in the proof of Theorem 4.2, we can prove the following result.

Theorem 5.3. For every n ∈ N, let un be the unique solution of problem (Pn). Then,

for every t ∈ (0, T ], it holds that

(P̄n)



∂un
∂t

(t, x) + (−∆)sQnun(t, x) = fn(t, x) for a.e. x ∈ Qn,

δn
∂un
∂t

+ CsN2−2sun + δnbun = δnfn in (H
s− 1

2
0,0 (Sn))′,

un(t, x) = 0 in Hs− 1
2 (Ω̃n),

un(0, x) = u
(n)
0 (x) in L2(Q) ∩ L2(Q,mn).

(5.12)

6 M-convergence of energy functionals

We study the convergence of the solutions of problems (P̄n) to the solution of problem

(P̄ ). Since {Qn} is a sequence of domains which converges to Q when n → +∞, the

natural setting for studying the convergence is that of varying Hilbert spaces introduced

in Section 1.2.

We set H = L2(Q,m), where m is the measure defined in (5.4), and the sequence

{Hn}n∈N with Hn = {L2(Q) ∩ L2(Q,mn)} where mn is the measure defined in (5.7),

with norms

‖u‖2
H = ‖u‖2

L2(Q) + ‖u‖2
L2(S), ‖u‖2

Hn = ‖u‖2
L2(Qn) + δn‖u‖2

L2(Sn).

The following results states the convergence of the sequence Hn to H in the sense of

Definition 1.5. A key role is played by the choice of the factor δn.

Proposition 6.1. Let δn =
(

3
4

)n
. Then the sequence {Hn}n∈N converges in the sense

of Definition 1.5 to H.

For the proof, we refer to Proposition 5.13 in [29], where C and Zn in Definition 1.5

are respectively C(Q) and the identity operator on C(Q).

We now introduce the notion of M-convergence. The definition of M-convergence of

quadratic energy forms is due to Mosco [37] for a fixed Hilbert space; it was then

adapted to the case of varying Hilbert spaces by Kuwae and Shioya (see Definition

2.11 in [26]).
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Definition 6.2. Let Hn be a sequence of Hilbert spaces converging to a Hilbert space

H. A sequence of forms
{
E

(n)
s

}
defined in Hn M-converges to a form Es defined in H

if the following conditions hold:

a) for every {vn} ∈ Hn weakly converging to u ∈ H in H

lim
n→∞

E(n)
s [vn] ≥ Es[u];

b) for every u ∈ H there exists a sequence {wn}, with wn ∈ Hn strongly converging

to u in H, such that

lim
n→∞

E(n)
s [wn] ≤ Es[u].

We extend the functionals Es and E
(n)
s to H and Hn respectively. We define

Es[u] :=


C3,s

2

∫∫
Q×Q

(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y) +

∫
S

b|u|2 dg if u ∈ D(Es),

+∞ if u ∈ H \ D(Es),

(6.1)

and, for every n ∈ N,

E(n)
s [u] :=



C3,s

2

∫∫
Q×Q

χQn(x)χQn(y)
(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y)

+δn

∫
Sn

b|u|2 dσ if u ∈ D(E
(n)
s ),

+∞ if u ∈ Hn \ D(E
(n)
s ).

(6.2)

We now prove two preliminary lemmas, before the main result (Theorem 6.5).

Proposition 6.3. If {vn}n∈N weakly converges to a vector u in H, then {vn}n∈N weakly

converges to u in L2(Q) and lim
n→∞

δn

∫
Sn

ϕvn dσ =

∫
S

ϕu dg for every ϕ ∈ C(Q).

For the proof see Proposition 6.6 in [29].

Proposition 6.4. Let vn ⇀ u in Hs(Q) and b ∈ C(Q). Then

δn

∫
Sn

b|vn|2 dσ →
∫
S

b|u|2 dg.
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Proof. We adapt the proof of Proposition 3.7 in [5] to our case. It holds that∣∣∣∣∣∣δn
∫
Sn

b |vn|2 dσ −
∫
S

b |u|2 dg

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣δn
∫
Sn

b |vn|2 dσ − δn
∫
Sn

b |u|2 dσ

∣∣∣∣∣∣
+

∣∣∣∣∣∣δn
∫
Sn

b |u|2 dσ −
∫
S

b |u|2 dg

∣∣∣∣∣∣ =: An +Bn.

For the term An, we have the following estimate:

An ≤ C δn‖b‖C(Q) ‖vn − u‖L2(Sn)

(
‖vn‖L2(Sn) + ‖u‖L2(Sn)

)
.

Since vn weakly converges to u in Hs(Q) by hypothesis, vn is equibounded in Hs(Q);

hence vn strongly converges to u in H l(Q) for every 0 < l < s.

Since Q has the extension property, we now consider the extension of vn−u in H l(R3).

From Theorem 3.6 in [6] (see also [5]), it follows that, if w ∈ H β̃(R3), for 1
2
< β̃ ≤ 3

2
,

‖w‖2
L2(Sn) ≤

Cβ̃
δn
‖w‖2

Hβ̃(R3)
, (6.3)

where Cβ̃ is independent of n. Moreover, from Theorem 1 on page 103 in [22], it follows

that, for 0 < β̃ < 1, there exists a linear extension operator Ext : H β̃(Q) → H β̃(R3)

such that

‖Extw‖2
Hβ̃(R3)

≤ C̄β̃‖w‖
2
Hβ̃(Q)

, (6.4)

with C̄β̃ depending on β̃. Therefore we get

δn ‖vn − u‖L2(Sn) ≤ C ‖vn − u‖Hl(R3) ≤ C ‖vn − u‖Hl(Q) ,

hence An → 0 when n→ +∞.

We now focus on Bn. Since u ∈ Hs(Q), from [22, page 213] there exists a sequence

{wm} ∈ C(Q) ∩Hs(Q) such that ‖wm − u‖Hs(Q) → 0 as m→ +∞. We then get

Bn ≤

∣∣∣∣∣∣δn
∫
Sn

b |u|2 dσ − δn
∫
Sn

b |wm|2 dσ

∣∣∣∣∣∣+

∣∣∣∣∣∣δn
∫
Sn

b |wm|2 dσ −
∫
S

b |wm|2 dg

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
S

b |wm|2 dg −
∫
S

b |u|2 dg

∣∣∣∣∣∣ .
We proceed as above and estimate the first and the third term in the right-hand side

with ‖u− wm‖Hs(Q), hence for every ε > 0 there exists mε ∈ N such that these two

terms are less than c ε. Since bwm is a continuous function, if we take m > mε, the

second term in the right-hand side goes to zero for n→ +∞ from Proposition 6.1.
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We now prove the main Theorem.

Theorem 6.5. Let δn = (31−df )n =
(

3
4

)n
. Let Es and E

(n)
s be defined as in (6.1) and

(6.2) respectively. Then E
(n)
s M-converges to the functional Es.

Proof. We have to prove conditions a) and b) in Definition 6.2.

Proof of condition a). Let vn ∈ Hn be a weakly converging sequence in H to u ∈ H.

We point out that we can suppose that vn ∈ D(E
(n)
s ) and

lim
n→∞

E(n)
s [vn] <∞,

otherwise the thesis follows trivially. These hypotheses imply that there exists a con-

stant independent of n such that

C3,s

2

∫∫
Q×Q

χQn(x)χQn(y)
(vn(x)− vn(y))2

|x− y|2s+3
dL3(x)dL3(y) + δn

∫
Sn

b|vn|2 dσ ≤ C. (6.5)

In particular ‖vn‖Hs(Qn) < C. From Theorem 1 page 103 in [22], for every n ∈ N there

exists a bounded linear operator Ext : Hs(Qn)→ Hs(R3) such that

‖Ext vn‖Hs(R3) ≤ CExt ‖vn‖Hs(Qn) ≤ CExtC,

with CExt independent of n.

We define v̂n = Ext vn|Q. Then v̂n ∈ Hs(Q) and ‖v̂n‖Hs(Q) ≤ CExtC. Therefore there

exists a subsequence (which we still denote by v̂n) weakly converging to some v̂ in

Hs(Q) and strongly converging in L2(Q). From Proposition 6.3, vn weakly converges

to u in L2(Q). We now prove that v̂ = u in L2(Q), that is∫
Q

(v̂ − u)ϕ dL3 = 0

for every ϕ ∈ L2(Q).

We first note that∫
Q

(v̂ − u)ϕ dL3 =

∫
Q

(v̂ − v̂n + v̂n − u)ϕ dL3

=

∫
Q

(v̂ − v̂n)ϕ dL3 +

∫
Qn

(vn − u)ϕ dL3 +

∫
Q\Qn

(v̂n − u)ϕ dL3.
(6.6)

We claim that each term on the right-hand side of (6.6) tends to zero as n → +∞.

From the strong convergence of v̂n to v̂ in L2(Q) and the weak convergence of vn to u
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in L2(Q), we deduce our claim for the first two terms. As to the third, from Hölder

inequality we deduce that∫
Q\Qn

|(v̂n − u)ϕ| dL2 ≤ ‖ϕ‖L2(Q\Qn)(‖v̂n‖L2(Q) + ‖u‖L2(Q)) −−−−→
n→+∞

0

since |Q \Qn| → 0 as n→ +∞ and v̂n is equibounded. Then we have that v̂n ⇀ u in

Hs(Q).

We now prove that

lim
n→∞

∫∫
Q×Q

χQn(x)χQn(y)
(vn(x)− vn(y))2

|x− y|2s+3
dL3(x)dL3(y) ≥

∫∫
Q×Q

(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y).

(6.7)

We prove a preliminary fact. We recall that v̂n converges to u weakly in Hs(Q) and

strongly in L2(Q).

We now set

ṽn(x, y) := χQn(x)χQn(y)
v̂n(x)− v̂n(y)

|x− y| 2s+3
2

.

Since v̂n belongs to Hs(Q) and is equibounded, ṽn belongs to L2(Q × Q) and is equi-

bounded. Hence there exists a subsequence (still denoted by ṽn) which weakly converges

to ṽ in L2(Q×Q). We claim that

ṽ(x, y) = ũ(x, y) :=
u(x)− u(y)

|x− y| 2s+3
2

a.e., (6.8)

where u is the weak limit of v̂n in Hs(Q). We have to prove that∫∫
Q×Q

(ṽ(x, y)− ũ(x, y))ϕ(x, y) dL3(x)dL3(y) = 0 ∀ϕ ∈ L2(Q×Q). (6.9)

We point out that we can suppose that ϕ ∈ C(Q × Q); the thesis will then follow by

density. We add and subtract the following two terms on the left-hand side of (6.9):∫∫
Q×Q

ṽn(x, y)ϕ(x, y) dL3(x)dL3(y) and

∫∫
Q×Q

v̂n(x)− v̂n(y)

|x− y| 2s+3
2

ϕ(x, y) dL3(x)dL3(y).

Hence the following holds:∫∫
Q×Q

(ṽ(x, y)− ũ(x, y))ϕ(x, y) dL3(x)dL3(y) =

∫∫
Q×Q

(ṽ − ṽn)ϕ(x, y) dL3(x)dL3(y)

+

∫∫
Q×Q

v̂n(x)− v̂n(y)

|x− y| 2s+3
2

(χQn(x)χQn(y)− χQ(x)χQ(y))ϕ(x, y) dL3(x)dL3(y)

+

∫∫
Q×Q

(
v̂n(x)− v̂n(y)

|x− y| 2s+3
2

− u(x)− u(y)

|x− y| 2s+3
2

)
ϕ(x, y) dL3(x)dL3(y) =: I

(n)
1 + I

(n)
2 + I

(n)
3 .
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We study these three terms separately. As to I
(n)
1 , since ṽn weakly converges to ṽ in

L2(Q×Q),

I
(n)
1 −−−−→

n→+∞
0.

As to I
(n)
2 , we point out that χQ(x)χQ(y)−χQn(x)χQn(y) = χ(Q×Q)\(Qn×Qn)(x, y), since

Qn ⊂ Q. Hence, from Hölder inequality it follows that

I
(n)
2 =

∫∫
(Q×Q)\(Qn×Qn)

v̂n(x)− v̂n(y)

|x− y| 2s+3
2

ϕ(x, y) dL3(x)dL3(y) ≤ ‖v̂n‖Hs(Q)‖ϕ‖L2((Q×Q)\(Qn×Qn)),

and the right-hand side tends to zero as n → +∞ since v̂n is equibounded in Hs(Q).

As to I
(n)
3 , we can rewrite it in the following way:

I
(n)
3 =

∫∫
Q×Q

(
v̂n(x)− v̂n(y)

|x− y| 2s+3
2

ϕ(x, y)− u(x)− u(y)

|x− y| 2s+3
2

ϕ(x, y)

)
dL3(x)dL3(y)

=

∫∫
Q×Q

v̂n(x)− u(x)

|x− y| 2s+3
2

ϕ(x, y) dL3(x)dL3(y)−
∫∫
Q×Q

v̂n(y)− u(y)

|x− y| 2s+3
2

ϕ(x, y) dL3(x)dL3(y)

=

∫
Q

(v̂n(x)− u(x))φ1(x) dL3(x)−
∫
Q

(v̂n(y)− u(y))φ2(y) dL3(y),

where

φ1(x) :=

∫
Q

ϕ(x, y)

|x− y| 2s+3
2

dL3(y), φ2(y) :=

∫
Q

ϕ(x, y)

|x− y| 2s+3
2

dL3(x).

We point out that both φ1 and φ2 belong to L2(Q). Hence, since v̂n converges strongly

to u in L2(Q), from Hölder inequality also I
(n)
3 tends to zero as n→ +∞, thus proving

(6.9).

We remark that v̂n = vn on Qn. Hence we have that

χQn(x)χQn(y)
vn(x)− vn(y)

|x− y| 2s+3
2

⇀
u(x)− u(y)

|x− y| 2s+3
2

in L2(Q×Q). From the lower semicontinuity of the norm, we get (6.7).

The thesis then follows from (6.7), Proposition 6.4 and liminf properties of the sum.

Proof of condition b). We prove that for every u ∈ H we can construct a sequence

{wn}n∈N strongly converging to u in H such that

Es[u] ≥ lim
n→∞

E(n)
s [wn].

We suppose that u ∈ D(Es), otherwise Es[u] = +∞ and the thesis follows trivially

from Lemma 1.12.

We set wn := u|Qn . We have to prove that wn strongly converges to u in H; we use the

characterization given in Lemma 1.9, i.e.
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(wn, vn)Hn → (u, v)H for every sequence {vn} weakly converging to a vector v in H.

By recalling the definitions of scalar products in Hn and H, from straightforward

calculations it follows that

|(wn, vn)Hn − (u, v)H | =

∣∣∣∣∣∣
∫
Qn

wnvn dL3 + δn

∫
Sn

wnvn dσ −
∫
Q

uv dL3 −
∫
S

uv dg

∣∣∣∣∣∣
=

∣∣∣∣∣∣(wn − u, vn)L2(Qn) + δn

∫
Sn

(wn − u)vn dσ + (u, vn)Hn − (u, v)H

∣∣∣∣∣∣
= |(u, vn)Hn − (u, v)H | −−−−→

n→+∞
0,

as wn = u on Qn and vn weakly converges to v in H.

We now prove condition b) of Definition 6.2 for wn. We have that

lim
n→∞

E(n)
s [wn] = lim

n→∞

 C3,s

2

∫∫
Qn×Qn

(wn(x)− wn(y))2

|x− y|2s+3
dL3(x)dL3(y) + δn

∫
Sn

b|wn|2 dσ


= lim

n→∞

 C3,s

2

∫∫
Qn×Qn

(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y) + δn

∫
Sn

b|u|2 dσ


=
C3,s

2

∫∫
Q×Q

(u(x)− u(y))2

|x− y|2s+3
dL3(x)dL3(y) +

∫
S

b|u|2 dg = Es[u],

where the last equality follows from Proposition 6.4 and conditions 1)-2)-3) in Section

2. This implies condition b) of Definition 6.2.

The M-convergence of the energy functionals implies the convergence of the semigroups,

as stated in the following result.

Theorem 6.6. Let E
(n)
s and Es be the energy functionals defined in (6.2) and (6.1)

respectively. The sequence of semigroups
{
T

(n)
s (t)

}
n∈N

associated with E
(n)
s converges

to the semigroup Ts(t) associated with Es in the sense of Definition 1.13 for every

t > 0.

For the proof see [25, Theorem 2.8] and [26, Theorem 2.4].

Remark 6.7. All these results can be easily extended to the more general case of fractal

mixture cylinders in R3, see e.g. [28] with obvious changes.
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7 Convergence of the solutions of the abstract

Cauchy problems

We consider the abstract Cauchy problems (P ) and (Pn) introduced in Section 3 and 5

respectively. We recall that, from Theorem 4.1 and Theorem 5.2, these problems admit

a unique classical solution respectively. We are interested in the asymptotic behavior

of the sequence {un} as n→ +∞.

Let m and mn be the measures defined in (5.4) and (5.7) respectively. We denote

by dt the one-dimensional Lebesgue measure on [0, T ]. We observe that L2([0, T ] ×
Q, dt× dmn) is isomorphic to L2([0, T ];Hn) and L2([0, T ]×Q, dt× dm) is isomorphic

to L2([0, T ];H). If we define

Kn = L2([0, T ];Hn) for every n ∈ N and K = L2([0, T ];H),

Kn converges to K in the sense of Definition 1.5, where the set C is now C([0, T ]×Q)

and Zn is the identity operator on C.

We denote by K = {∪nKn}∪K. We define strong and weak convergence in K according

to Definition 1.6 and 1.7 respectively. In the following we use either the characterization

of strong convergence in K given in Lemma 1.9 or the one given in Lemma 1.10. For

the sake of clarity, we recall them.

Proposition 7.1. A sequence of vectors {un}n∈N strongly converges to u in K if one

of the following holds:

a)



T∫
0

‖un(t)‖2
Hn dt −−−−→

n→+∞

T∫
0

‖u(t)‖2
H dt

T∫
0

(un(t), ϕ(t))Hn dt −−−−→
n→+∞

T∫
0

(u(t), ϕ(t))H dt

(7.1)

for every ϕ ∈ C([0, T ]×Q);

b)

T∫
0

(un(t), vn(t))Hn dt −−−−→
n→+∞

T∫
0

(u(t), v(t))H dt (7.2)

for every sequence {vn}n∈N strongly converging to v in K.

Remark 7.2. We point out that, by proceeding as in Proposition 6.3, the weak conver-

gence in K implies the weak convergence in L2([0, T ]×Q).
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Theorem 7.3. Let u and un be the classical solutions of problems (P ) and (Pn) given

by Theorems 4.1 and 5.2 respectively. Let δn =
(

3
4

)n
. If for every t ∈ [0, T ] fn(t)→ f(t)

strongly in H, u
(n)
0 → u0 strongly in H and there exists a constant C such that

‖u(n)
0 ‖D(A

(n)
s )

+ ‖fn‖Cα([0,T ];Hn) < C for every n ∈ N, (7.3)

then:

i) {un(t)} converges to u(t) in H for every fixed t ∈ [0, T ];

ii) {un} converges to u in K.

Proof. Since u
(n)
0 → u0 and fn(t) → f(t) in H for every t ∈ [0, T ], from Theorem 6.6

we have that for every t ∈ [0, T ]

T (n)
s (t)fn(t) −−−−→

n→+∞
Ts(t)f(t) and T (n)

s (t)u
(n)
0 −−−−→

n→+∞
Ts(t)u0 in H. (7.4)

In order to prove i), we use the characterization of the strong convergence given in

Lemma 1.9. More precisely, we prove that for every t ∈ [0, T ]

(un, vn)Hn → (u, v)H

for every sequence {vn}n∈N weakly converging in H to v ∈ H.

From (5.10), we get

(un, vn)Hn =

∫
Qn

 t∫
0

T (n)
s (t− τ)fn(τ, x) dτ

 vn(x) dL3

+ δn

∫
Sn

 t∫
0

T (n)
s (t− τ)fn(τ, x(`)) dτ

 vn(x(`)) dσ + (T (n)
s (t)u

(n)
0 , vn)Hn

=

t∫
0

(
T (n)
s (t− τ)fn(τ), vn

)
Hn

dτ + (T (n)
s (t)u

(n)
0 , vn)Hn .

From (7.4) and the weak convergence of vn to v, we deduce for every t ∈ [0, T ]

(T (n)
s (t)u

(n)
0 , vn)Hn+

(
T (n)
s (t− τ)fn(τ), vn

)
Hn
−−−−→
n→+∞

(Ts(t)u0, v)H+(T (t− τ)f(τ), v)H .

We recall that, for every n ∈ N, T
(n)
s (t) is a contraction semigroup. Hence, from Lemma

1.8 and (7.3) there exists a constant C independent from n such that∣∣∣(T (n)
s (t)u

(n)
0 , vn)Hn +

(
T (n)
s (t− τ)fn(τ), vn

)
Hn

∣∣∣ ≤ C.
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The claim then follows from the dominated convergence Theorem.

We now prove ii). From Proposition 7.1, this amounts to prove

‖un‖Kn → ‖u‖K (7.5)

and

(un, φ)Kn → (u, φ)K ∀φ ∈ C([0, T ]×Q). (7.6)

We note that from (5.11) and (7.3), for every t ∈ (0, T ] it holds that

‖un(t)‖Hn ≤ C(‖u(n)
0 ‖L2(Q,mn) + ‖fn‖C0,α([0,T ];L2(Q,mn))) ≤ C,

where C is independent from n. Thus the sequence {un} is equibounded in [0, T ], and

from i) we get

‖un(t)‖Hn → ‖u(t)‖H .

Hence, from the dominated convergence Theorem we have that (7.5) holds.

We come to (7.6). From i), it follows in particular that for every t ∈ [0, T ]

(un(t), φ(t))Hn → (u(t), φ(t))H ∀φ ∈ C([0, T ]×Q).

Since

|(un(t), φ(t))Hn| ≤ C ‖φ‖C([0,T ]×Q) ,

again from the dominated convergence Theorem we deduce

(un, φ)Kn −−−−→
n→+∞

(u, φ)K ,

thus proving (7.6).

Remark 7.4. We point out that the convergence of fn to f in H, together with the

equiboundedness property (7.3), imply the convergence of fn in K.

Remark 7.5. Since we assumed u
(n)
0 ∈ D(A

(n)
s ), the solution is only classical. Hence

∂un
∂t

can blow up for t = 0 and one cannot have the weak convergence of {∂un
∂t
} to ∂u

∂t

in K and the convergence of {A(n)
s un} to As in K. If we restrict to [ε, T ], the solution

un belongs to the space C([ε, T ];D(A
(n)
s )) ∩ C1([ε, T ];L2(Q,mn)) and the following a

priori estimate holds (see Theorem 4.3.1 in [34]):

‖un‖C1([ε,T ];L2(Q,mn)) + ‖un‖C([ε,T ];D(A
(n)
s ))
≤ C

(
‖u(n)

0 ‖D(A
(n)
s )

+ ‖fn‖C0,α([ε,T ];L2(Q,mn))

)
,

where C is a constant independent of n.

We now define for ε > 0

K
(ε)
n = L2([ε, T ];Hn), K(ε) = L2([ε, T ];H) and K(ε) = {∪nK(ε)

n } ∪K(ε),
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and we endow these spaces with the obvious scalar products.

Theorem 7.6. Let the assumptions of Theorem 7.3 hold. We have

i)
{
∂un(t,x)

∂t

}
weakly converges to ∂u(t,x)

∂t
in K(ε);

ii)
{
A

(n)
s un

}
weakly converges to Asu in K(ε).

Proof. We first prove i). From Theorem 5.2 and (7.3) we have for every n ∈ N

sup
t∈[ε,T ]

∥∥∥∥∂un∂t
∥∥∥∥
Hn

≤ C.

This implies in particular that ∂un
∂t
∈ L2([ε, T ];Hn) and from Remark 7.5 there exists

a constant C independent from n such that∥∥∥∥∂un∂t
∥∥∥∥
L2([ε,T ];Hn)

≤ C.

From Lemma 1.11 we deduce that there exists a subsequence (still denoted by ∂un
∂t

)

weakly converging in K(ε) to a function v ∈ K(ε). We have to show that v = ∂u
∂t

.

From the definition of weak convergence in K (which can be trivially extended to K(ε))

it follows that (
∂un
∂t

, wn

)
Kn

−−−−→
n→+∞

(v, w)K

for every sequence {wn} ∈ Kn such that wn → w in K.

We take wn = ϕ, where ϕ is an arbitrary function of C1([ε, T ];C(Q)). We have

lim
n→+∞

∫
Q

T∫
ε

∂un(t, x)

∂t
ϕ(t, x) dmndt =

∫
Q

T∫
ε

v(t, x)ϕ(t, x) dmdt.

Proceeding as in Theorem 5.3 in [30], we integrate by parts in time and we get

∫
Q

T∫
ε

∂un(t, x)

∂t
ϕ(t, x) dtdmn =

∫
Q

(un(T, x)ϕ(T, x)− un(ε, x)ϕ(ε, x)) dmn

−
∫
Q

T∫
ε

un(t, x)
∂ϕ(t, x)

∂t
dtdmn. (7.7)

Passing to the limit in the first term on the right-hand side of (7.7) as n→ +∞, from

condition i) in Theorem 7.3 we get
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∫
Q

(un(T, x)ϕ(T, x)− un(ε, x)ϕ(ε, x)) dmn −−−−→
n→+∞

∫
Q

(u(T, x)ϕ(T, x)− u(ε, x)ϕ(ε, x)) dm.

It remains to study

lim
n→+∞

T∫
ε

∫
Q

un(t, x)
∂ϕ(t, x)

∂t
dmndt. (7.8)

We observe that

T∫
ε

∫
Q

un(t, x)
∂ϕ(t, x)

∂t
dmndt =

(
un(t),

∂ϕ(t)

∂t

)
K

(ε)
n

.

From ii) in Theorem 7.3 we have(
un(t),

∂ϕ(t)

∂t

)
K

(ε)
n

−−−−→
n→+∞

(
u(t),

∂ϕ(t)

∂t

)
K(ε)

.

Hence, passing to the limit as n→ +∞ in (7.7) we have

∫
Q

T∫
ε

v(t, x)ϕ(t, x) dtdm =

∫
Q

(u(T, x)ϕ(T, x)− u(ε, x)ϕ(ε, x)) dm

−
∫
Q

T∫
ε

u(t, x)
∂ϕ(t, x)

∂t
dtdm.

Therefore v = ∂u
∂t

, i.e.
∂un
∂t

⇀
∂u

∂t
in K(ε). (7.9)

The proof of ii) can be done as in Theorem 5.3 of [30] taking into account Remark 7.4

with the obvious modifications. It holds

lim
n→+∞

(
A(n)
s un, un

)
K

(ε)
n

= (Asu, u)K(ε) ,

hence

lim
n→+∞

T∫
ε

E(n)
s [un(t)] dt =

T∫
ε

Es[u(t)] dt. (7.10)

Hence the thesis follows.

Remark 7.7. From i) and ii) of Theorem 7.6 and Remark 7.2 we have:
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a)
{
∂un
∂t

}
weakly converges to ∂u

∂t
in L2([ε, T ]×Q);

b)
{
A

(n)
s un

}
weakly converges to Asu in L2([ε, T ]×Q).

We now focus on the fractional normal derivative. We prove this preliminary result.

Proposition 7.8. Let {wn}, with wn ∈ K(ε)
n , be weakly convergent in K(ε) to w ∈ K(ε).

Then for every ϕ ∈ L2([ε, T ];Hs(Q))

T∫
ε

(wn, ϕ)L2(Sn,δnσ) dt −−−−→
n→+∞

T∫
ε

(w,ϕ)L2(S) dt.

Proof. We point out that, from Remark 7.2, for every ϕ ∈ L2([ε, T ];Hs(Q)) we have

that
T∫
ε

(wn, ϕ)L2(Q) dt −−−−→
n→+∞

T∫
ε

(w,ϕ)L2(Q) dt.

From this it follows that

T∫
ε

(wn, ϕ)L2(Qn) dt =

T∫
ε

(wn, ϕ)L2(Q) dt−
T∫
ε

(wn, ϕ)L2(Q\Qn) dt −−−−→
n→+∞

T∫
ε

(w,ϕ)L2(Q) dt,

(7.11)

since {wn} is equibounded. Moreover, by hypothesis we have that

T∫
ε

(
(wn, ϕ)L2(Qn) + (wn, ϕ)L2(Sn,δnσ)

)
dt −−−−→

n→+∞

T∫
ε

(
(w,ϕ)L2(Q) + (w,ϕ)L2(S)

)
dt.

(7.12)

The thesis then follows from (7.11) and (7.12).

Theorem 7.9. Under the assumptions of Theorem 7.3

T∫
ε

〈N2−2sun, ϕ〉
(H

s− 1
2

0,0 (Sn))′,H
s− 1

2
0,0 (Sn)

−−−−→
n→+∞

T∫
ε

〈N2−2su, ϕ〉(B2,2
η,0(S))′,B2,2

η,0(S) (7.13)

for every ϕ ∈ L2([ε, T ];Hs(Q)), where η = s− 1 +
df
2

.

Proof. We take the scalar product in L2(Sn, δnσ) between the second equation in prob-

lem (P̄n) and ϕ ∈ L2([ε, T ];Hs(Q)) and then we integrate for t ∈ [ε, T ]:

T∫
ε

∫
Sn

δn
∂un
∂t

ϕ dσdt+

T∫
ε

〈CsN2−2sun, ϕ〉
(H

s− 1
2

0,0 (Sn))′,H
s− 1

2
0,0 (Sn)

+

T∫
ε

∫
Sn

δnbunϕ dσdt =

T∫
ε

∫
Sn

δnfnϕ dσdt.

(7.14)
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Since fn → f strongly in H, from Remarks 7.4 and 7.2 in particular it follows that

fn → f in L2([ε, T ] × Q). Hence, from Proposition 7.8 the following holds for every

ϕ ∈ L2([ε, T ];Hs(Q)):

lim
n→+∞

T∫
ε

〈CsN2−2sun, ϕ〉
(H

s− 1
2

0,0 (Sn))′,H
s− 1

2
0,0 (Sn)

= lim
n→+∞

− T∫
ε

∫
Sn

δn
∂un
∂t

ϕ dσdt−
T∫
ε

∫
Sn

δnbunϕ dσdt+

T∫
ε

∫
Sn

δnfnϕ dσdt



= −
T∫
ε

∫
S

∂u

∂t
ϕ dgdt−

T∫
ε

∫
S

buϕ dgdt+

T∫
ε

∫
S

fϕ dgdt =

T∫
ε

〈CsN2−2su, ϕ〉(B2,2
η,0(S))′,B2,2

η,0(S),

since u solves problem (P̄ ).
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