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Via A. Scarpa 16,

00161 Roma, Italy.

First published in: Creo Simone, “Singular p-homogenization for highly conductive fractal

layers”. Z. Anal. Anwend., in press (2021). ©European Mathematical Society.

Abstract

We consider a quasi-linear homogenization problem in a two-dimensional pre-

fractal domain Ωn, for n ∈ N, surrounded by thick fibers of amplitude ε. We

introduce a sequence of “pre-homogenized” energy functionals and we prove that

this sequence converges in a suitable sense to a quasi-linear fractal energy func-

tional involving a p-energy on the fractal boundary. We prove existence and

uniqueness results for (quasi-linear) pre-homogenized and homogenized fractal

problems. The convergence of the solutions is also investigated.
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Introduction

In the last decades, the study of different boundary value problems in domains with

irregular boundary (or presenting irregular interfaces) has been of great interest. This

is due to the fact that many industrial processes and natural phenomena occur across

highly irregular media. It turns out that fractals can well model such irregular geome-

tries; we remark that fractal sets are constructed by an iterative process.

Different problems on various fractal domains have been studied in the literature:

among the others, we refer to [28, 39, 36, 35, 30, 16]. In particular, in the latest years

the focus has been on the so-called Venttsel’ problems, known in literature also as prob-

lems with dynamical boundary conditions.

Mathematically, Venttsel’ problems are characterized by an unusual boundary con-

dition: the operators governing the diffusion in the bulk and on the boundary are

of the same order. For the literature on Venttsel’ problems in piecewise smooth

or fractal domains, from linear to quasi-linear, from local to nonlocal, we refer to

[34, 15, 17, 31, 12, 32, 14, 13].

In the linear smooth case, it is by now well known that Venttsel’ problems can be seen

as the limit of suitable homogenization problems. In particular, as in the seminal paper

[47] (see also [2, 20]), the authors consider a boundary value problem in a domain con-

taining a thin strip of large conductivity. If the product between the thickness and the

conductivity of the strip has finite non-zero limit, it is proved that the limit problem

is of Venttsel’ type.

This result, in the linear case, has been extended to the case of fractal-type domains;

among the others, we refer to [29, 42, 43, 44, 11]. The authors consider transmission

problems in regular domains of RN , containing a pre-fractal interface coated with a

thin fiber of amplitude ε and they prove, under suitable structural assumptions on the

fiber, that the limit problem presents a “Venttsel’-type” condition on the limit fractal

interface.

The aim of the present paper is to prove that quasi-linear “pure” Venttsel’ problems in

two-dimensional fractal domains can be seen as limit of suitable homogenization prob-

lems, thus generalizing the results known for the smooth quasi-linear case considered

in [1] and providing a better physical ground to Venttsel’ problems. To our knowledge,

the present paper is the first example of homogenization of quasi-linear problems in the

fractal case. We point out that quasi-linear homogenization problems model nonlinear

thermal conduction in highly conductive thin structures.

The key issue is to suitably construct the fiber of thickness ε in order to obtain in the

limit the Venttsel’ boundary condition. In the smooth case, the usual homogenization

technique is to approximate a one-dimensional infinitely conductive thin layer by a
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two-dimensional thin layer of vanishing thickness ε and increasingly high conductivity

aε. However, the construction of an ε-neighborhood for a fractal layer is tricky.

Following [40] (see also [29]), we construct a thin fiber around pre-fractal domains. Pre-

fractal domains have piecewise smooth boundary of polygonal type, and they depend

on a natural parameter n ∈ N, denoting the order of the iteration process in the

construction of the fractal.

More precisely, we formally state the pre-homogenized problem as follows:

(P n
ε )


− div(anε (x, y)|∇u|p−2∇u) + |u|p−2u = f in Ωn

ε ,

[u] = 0 on ∂Ωn and on Γnε ,

suitable transmission conditions

where Ωn
ε is a suitable pre-fractal domain Ωn surrounded by a fiber of thickness ε

sufficiently small (see Section 1 for the details), f is a given function in a suitable

Lebesgue space, Γnε will be suitably defined in Section 1 and anε (x, y) is the conductivity

of Ωn
ε which will be defined later. Problem (P n

ε ) presents also sophisticated transmission

conditions which will be satisfied in a suitable weak sense, see Section 3.

We introduce a sequence of quasi-linear energy functionals defined on Ωn
ε . Our aim

is to prove that the pre-homogenized functionals M-converge to a limit fractal energy

functional. This convergence is very delicate since it is driven by two parameters n

and ε and we are interested in the limit as ε → 0 and n → +∞ simultaneously. The

main tools are those of fractal analysis and homogenization: e.g., harmonic extensions

obtained by decimation and ad-hoc interpolation and average-value operators on the

fibers. Moreover, a crucial role will be played by the choice of the conductivity anε ,

which will be singular and discontinuous.

After proving the M-convergence of the pre-homogenized functionals, we prove that

both the pre-homogenized and the fractal homogenized problems admit unique weak

solutions in suitable functional spaces. We point out that the homogenized problem

will involve a Venttsel’ boundary condition on the fractal boundary. Moreover, from the

M-convergence of the functionals we deduce the convergence of the pre-homogenized

solutions to the limit fractal homogenized one as ε→ 0 and n→ +∞.

The paper is organized as follows. In Section 1, we construct the domain Ωn
ε and we

introduce the functional setting of this work. In Section 2, we introduce the func-

tionals and we prove that the pre-homogenized functionals M-converge to the fractal

functional. Finally, in Section 3, we prove existence and uniqueness results for both

the pre-homogenized and fractal problems and the convergence of the pre-homogenized

solutions to the limit fractal one.
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1 Preliminaries

Throughout this work let p ≥ 2. We start by introducing the geometry of the problem.

Let T 0 be the boundary of the triangle of vertices A = (0, 0), B = (1, 0) e C = (1
2
,
√
3
2
)

and let V0 = {A,B,C}. We construct a bounded (open) domain Ω ⊂ R2 having

as fractal boundary ∂Ω = K the Koch snowflake; we point out that K can be seen

as the union of three com-planar Koch curves Ki, for i = 1, 2, 3. K1 is the uniquely

determined self-similar set with respect to the following family of contractive similitudes

Ψ(1) = {ψ(1)
1 , ψ

(1)
2 , ψ

(1)
3 , ψ

(1)
4 } (with respect to the same ratio 1

3
) to the side AB of T 0:

ψ
(1)
1 (z) =

z

3
, ψ

(1)
2 (z) =

z

3
e−iπ/3 +

1

3
,

ψ
(1)
3 (z) =

z

3
eiπ/3 +

1

2
− i

√
3

6
, ψ

(1)
4 (z) =

z + 2

3
.

We construct in a similar way the curves K2 and K3 as the uniquely determined self-

similar sets with respect to suitable families of contractive similitudes Ψ(2) and Ψ(3)

respectively. For more details on the construction of Ω and on the properties of the

Koch snowflake, we refer to [21] and [19] respectively.

For every n ∈ N, let Ωn be the approximating domain having as boundary Kn the n-th

approximation of K. We point out that every Ωn is a bounded polygonal non-convex

domain; moreover, the internal angles of the boundary have amplitude equal either to
π
3
or 4π

3
. We also denote by Vn the set of vertices of the polygonal curve Kn and by

V⋆ := ∪n≥1Vn. We point out that K = V⋆.
We now introduce the fibers that we will construct around our domain Ωn. Let ε0 =
1
2
tan π

12
. We denote by S1, S2 and S3 the segments having endpoints A and B, B and

C, and A and C respectively. On every Sj we introduce an ε-neighborhood Σj,ε, for

every 0 < ε < ε0 and j = 1, 2, 3. More precisely, Σ1,ε is the open polygon having as

vertices A, B, P1 = ( ε
C1
,− ε

2
) and P2 = (1 − ε

C1
,− ε

2
), where C1 = 2ε0 = tan π

12
. We

proceed similarly for constructing Σ2,ε and Σ3,ε. We point out that every Σj,ε can be

decomposed into the union of a rectangle Rl,ε and two triangles T1,l,ε and T2,l,ε.

We now construct a larger fiber Σj,2ε of thickness ε, for j = 1, 2, 3. For j = 1, Σ1,2ε is

the open polygon of vertices A, B, Q1 = ( ε
C1
,−ε) and Q2 = (1− ε

C1
,−ε). We proceed

analogously for the construction of Σ2,2ε and Σ3,2ε. Obviously Σj,2ε contains the fiber

Σj,ε.

We define

Σ2ε =
3⋃
j=1

Σj,2ε, Σε =
3⋃
j=1

Σj,ε.

We iterate this procedure on every segment of the pre-fractal curveKn and we construct

two sequences of fibers Σn
ε and Σn

2ε respectively.
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We now introduce a weight wnε on Σn
ε . For i1, . . . , in ∈ {1, 2, 3, 4}, we denote by

ψi|n := ψi1 ◦ · · · ◦ ψin and, for any measurable set A, we set Ai|n := ψi|n(A). Let P be

a point belonging to ∂Σ
i|n
l,ε \Kn and let P⊥ be its orthogonal projection on S

i|n
l . Let

(x, y) belong to the segment of endpoints P and P⊥. Then

wnε (x, y) =


2p+Cp

1

2|P−P⊥| if (x, y) ∈ T i|n
j,l,ε, j = 1, 2,

1
|P−P⊥| if (x, y) ∈ Ri|n

l,ε .
(1.1)

The weights wnε enjoy an important property. We recall that a function w belongs to

the Muckenhopt class Ap [45] if there exists a positive constant C such that for every

ball B ⊂ R2 it holds that∫
B

w dL2

 ·

∫
B

|w|−
1

p−1 dL2

p−1

≤ C|B|p. (1.2)

As in [41], for fixed ε and n, the weights wnε belong to the class A2, and the constant C

in (1.2) can be taken independent from n and ε. Since p ≥ 2, from Hölder inequality

this implies that wnε ∈ Ap for fixed ε and n.

We set (see Figure 1)

Ωn
ε = Int(Ωn ∪ Σn

2ε),

where Int(A) denotes the interior of a set A. We denote by Ω∗ the triangle of vertices

D = (1
2
,−

√
3
2
), E = (3

2
,
√
3
2
) and F = (−1

2
,
√
3
2
); we point out that Ω∗ contains Ω and

Ωn
ε for every n ∈ N and 0 < ε < ε0. Moreover, let Γnε = ∂Σn

ε \Kn.

We can define, in a natural way, a finite Borel measure µ supported on K by

µ := µ1 + µ2 + µ3, (1.3)

where µi denotes the normalized df -dimensional Hausdorff measure restricted to Ki,

i = 1, 2, 3, where df =
log 4
log 3

is the Hausdorff measure of K.

For the measure µ there exist two positive constants c1 and c2 such that

c1 r
d ≤ µ(B(P, r) ∩K) ≤ c2 r

d, ∀P ∈ K, (1.4)

where d = df and B(P, r) denotes the Euclidean ball of center P and radius r. Since

µ is supported on K, we can write µ(B(P, r)) in (1.4) in place of µ(B(P, r) ∩K). We

note that, in the terminology of [24], from (1.4) it follows that K is a df -set and the

measure µ is a df -measure.

By Lp(·) we denote the Lebesgue space with respect to the Lebesgue measure dL2 on

subsets of R2, which will be left to the context whenever that does not create ambiguity.
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Figure 1: The domain Ωn
ε .

By Lp(K,µ) we denote the Banach space of p-summable functions on K with respect

to the invariant measure µ. By ℓ we denote the natural arc length coordinate on each

edge of Kn and we introduce the coordinates x = x(ℓ), y = y(ℓ), on every segment of

Kn. By dℓ we denote the one–dimensional measure given by the arc length ℓ.

Let G be an open set of R2. By W s,p(G), where s ∈ R+, we denote the (possibly

fractional) Sobolev spaces (see [46]). Given S a closed set of R2, by C0,α(S) we denote
the space of Hölder continuous functions on S of exponent α.

The domains Ωn are (ϵ, δ) domains with parameters ϵ and δ independent of the (in-

creasing) number of sides of Kn (see Lemma 3.3 in [8]). Thus, by the extension theorem

for (ϵ, δ) domains due to Jones (Theorem 1 in [22]), we obtain the following theorem,

which provides an extension operator fromW 1,p(Ωn) to the spaceW
1,p(R2) whose norm

is independent of n (see Theorem 5.7 in [9]).

Theorem 1.1. There exists a bounded linear extension operator ExtJ : W 1,p(Ωn) →
W 1,p(R2) such that

∥ExtJ v∥pW 1,p(R2) ≤ CJ∥v∥pW 1,p(Ωn)
(1.5)

with CJ independent of n.

We recall a Green formula for Lipschitz domains (see [5] and [4]). Let D be a Lipschitz

domain and let (Lp
′

div(D))2 := {w ∈ (Lp
′
(D))2 : divw ∈ Lp

′
(D)}. Then, for every

u, v ∈ W 1,p(D) such that w := |∇u|p−2∇u ∈ (Lp
′

div(D))2, since ∆pu = div(|∇u|p−2∇u),
it holds
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∫
D

|∇u|p−2∇u∇v dL2 =

〈
∂u

∂ν
|∇u|p−2, v

〉
W

− 1
p′ ,p

′
(∂D),W

1
p′ ,p(∂D)

−
∫
D

∆pu v dL2.

We now introduce Besov spaces on the fractal setK. From now on, we set α = 1− 2−df
p

.

We define the Besov space on K only for this particular α, which is the case of our

interest. For a general treatment, see [24].

Definition 1.2. Let µ be the measure introduced in (1.3) and (1.4). We say that

f ∈ Bp,p
α (K) if f ∈ Lp(K,µ) and

∥f∥Bp,p
α (K) < +∞,

where

∥f∥Bp,p
α (K) = ∥f∥Lp(K,µ) +

∫ ∫
|P−P ′|<1

|f(P )− f(P ′)|p

|P − P ′|2df+p−1
dµ(P )dµ(P ′)


1
p

(1.6)

We recall a trace theorem.

Theorem 1.3. Bp,p
α (K) is the trace space of W 1,p(Ω) that is:

1) There exists a linear and continuous operator γ0 : W
1,p(Ω) → Bp,p

α (K).

2) There exists a linear and continuous operator Ext : Bp,p
α (K) → W 1,p(Ω) such that

γ0 ◦ Ext is the identity operator on Bp,p
α (K).

For the proof we refer to Theorem 1 of Chapter VII in [24].

By proceeding as in Theorem 3.7 in [33], we can prove the following Green formula for

fractal domains. If w := |∇u|p−2∇u ∈ (Lp
′

div(Ω))
2 := {w ∈ (Lp

′
(Ω))2 : divw ∈ Lp

′
(Ω)},

since ∆pu = div(|∇u|p−2∇u), then for α = 1− 2−df
p∫

Ω

|∇u|p−2∇u∇ψ dL2 =

〈
∂u

∂ν
|∇u|p−2, ψ

〉
(B

p,p
α (K))′,Bp,p

α (K)

−
∫
Ω

∆puψ dL2

for every ψ ∈ W 1,p(Ω). Here (Bp,p
α (K))′ denotes the dual of the Besov space Bp,p

α (K)

on K. This space as shown in [25] coincides with a subspace of Schwartz distributions

D′(R2), which are supported on K. They are built by means of atomic decomposition.

Actually, Jonsson and Wallin proved this result in the general framework of d-sets; we

refer to [25] for a complete discussion.
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2 M-convergence of quasi-linear functionals

We introduce for n ∈ N and 0 < ε < ε0 the energy functionals which we will consider

in order to prove the convergence results.

We denote byW 1,p(Ωn
ε , a

n
ε ) the Sobolev space of restrictions to Ωn

ε of functions u defined

on Ω∗ for which the following norm is finite:

∥u∥pW 1,p(Ωn
ε ,a

n
ε )

:= ∥u∥pLp(Ωn
ε )
+

∫
Ωn

ε

anε (x, y)|∇u|p dL2. (2.1)

Let δn =
(
3
4

)n
. We introduce the following energy functionals defined on L2(Ω∗)

Φ(n)
ε [u] :=


1
p

∫
Ωn

ε

|u|p dL2 +
1
p

∫
Ωn

ε

anε (x, y)|∇u|p dL2 if u|Ωn
ε
∈ W 1,p(Ωn

ε , a
n
ε ),

+∞ if u ∈ L2(Ω∗) \W 1,p(Ωn
ε , a

n
ε ),

(2.2)

where

anε (x, y) =

δ1−pn wnε (x, y) if (x, y) ∈ Σn
ε ,

1 if (x, y) ∈ Ωn
ε \ Σn

ε ,

and wnε (x, y) is the weight function defined in (1.1).

Proposition 2.1. Φ
(n)
ε is a weakly lower semicontinuous, proper and strictly convex

functional in L2(Ω∗). Moreover, Φ
(n)
ε is coercive on W 1,p(Ωn

ε , a
n
ε ).

Proof. It is clear from the definition that Φ
(n)
ε is proper and strictly convex. The weak

lower semicontinuity follows from the properties of the norms and also the coercivity

of Φ
(n)
ε follows at once.

We now introduce the fractal energy functional on ∂Ω (see [7] and [31] for a complete

discussion).

For u : V⋆ → R, we define for 1 < p <∞ and n ∈ N the following quasi-linear discrete

energy form:

E (n)
p [u] =

4(p−1)n

p

4∑
i1,...,in=1

∑
ξ,η∈V0

|u(ψi|n(ξ))− u(ψi|n(η))|p. (2.3)

We introduce the nonlinear fractal energy form Ep with domain D(Ep) := {u ∈ C(K) :

Ep[u|K ] <∞} ⊂ Lp(K,µ) as the following limit:

Ep[u] = lim
n→∞

E (n)
p [u]. (2.4)

8



We define the fractal functional:

Φ[u] :=


1
p

∫
Ω

|u|p dL2 +
1
p

∫
Ω

|∇u|p dL2 + Ep[u] if u|Ω ∈ D(Φ),

+∞ if u ∈ L2(Ω∗) \D(Φ),

(2.5)

with domain

D(Φ) :=
{
u ∈ W 1,p(Ω) : u|

K
∈ D(Ep)

}
.

We endow D(Φ) with the following norm:

∥u∥pD(Φp)
:=

∫
Ω

|u|p dL2 +

∫
Ω

|∇u|p dL2 + Ep[u].

From the definition of the ∥ ·∥D(Φp)-norm and by proceeding as in [31, Proposition 2.3],

we can prove the following result.

Proposition 2.2. Φ is a weakly lower semicontinuous, proper and strictly convex func-

tional in L2(Ω∗). Moreover, Φ is coercive on D(Φ).

From now on, we suppose that ε ≡ εn is a sequence converging to 0 as n → +∞.

Hence, in order to lighten the notation, sometimes we suppress the subscript ε and we

write simply un in place of unε .

We recall the definition of M-convergence adapted to our case. This definition was first

introduced by Mosco in [37]; here we recall the definition given in [38, Definition 2.1.1],

which best fits our aims.

Definition 2.3. Let H := L2(Ω∗). A sequence of proper and convex functionals
{
Φ

(n)
ε

}
defined in H M-converges to a functional Φ in H if the following hold:

a) for every {vn} ∈ H weakly converging to u ∈ H

lim
n→∞

Φ(n)
ε [vn] ≥ Φ[u].

b) for every u ∈ H there exists a sequence {un} ∈ H strongly converging to u in H,

such that

lim
n→∞

Φ(n)
ε [un] ≤ Φ[u].

We prove a preliminary lemma.

Lemma 2.4. For every u ∈ D(Φ) there exists a sequence of functions ûm ∈ C0,β(Ω∗)∩
W 1,p(Ω∗) with β = df (1− 1

p
) such that ûm ≡ u|K on K and it converges strongly to u

in L2(Ω∗). Moreover, ûm −−−−→
m→+∞

u strongly in W 1,p(Ω).
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Proof. Let u ∈ D(Φ), so that in particular u|K ∈ D(Ep). From [24, Theorem 3, page

155] there exists an extension operator from W 1,p(Ω) to W 1,p(Ω∗); with an abuse of

notation, we still denote the extension of u ∈ D(Φ) to W 1,p(Ω∗) by u. From Theorem

4.1 in [10], this latter space coincides with the space Lipdf ,p,∞(K) (for the definition see

Jonsson [23]). We note that the space Lipdf ,p,∞(K) is a subspace of the Besov space

Bp,∞
df

(K); hence we can extend u|K to a function û defined on R2 and belonging to the

space Bp,∞
df+

2−df
p

(R2). From the properties of Besov spaces we have that Bp,∞
df+

2−df
p

(R2) ⊂

Bp,p

df+
2−df

p
−ϵ
(R2) for every ϵ > 0. The latter space coincides with the usual Sobolev space

W df+
2−df

p
−ϵ,p(R2). By embedding properties of Besov spaces, we get that û ∈ C0,β(R2)

for β = df (1 − 1
p
) [24, page 5]. In particular, the trace of û on K belongs to C0,β(K)

and we identify u|K with this trace.

Since in particular u ∈ W 1,p(Ω∗), we have that w := û − u belongs to W 1,p(Ω∗) and

has zero trace on K. From the density of C1(Ω∗) in W 1,p(Ω∗), there exists a sequence

{u∗m}, with u∗m ∈ C1(Ω∗) and u∗m ≡ 0 on K, which converges strongly to w = û− u in

W 1,p(Ω∗) for m → +∞. For every m we define ûm := −u∗m + û. Hence, the sequence

{ûm} converges to u strongly in L2(Ω∗) and W 1,p(Ω∗) and Ep[ûm] = Ep[u|K ]. Finally,

the strong convergence of {ûm} to u in W 1,p(Ω∗) implies the strong convergence on

W 1,p(Ω), thus concluding the proof.

Before focusing on the main convergence result, we need to introduce some tools. As

in [43], we introduce a family of nested and regular triangulations Tn of Ω∗ such that

at every iteration n the vertices of Kn are also nodes of the triangulation. We denote

by Pn the set of vertices of all the triangles of Tn and by Sn the space of continuous

functions on Ω∗ affine on every triangle of Tn; we point out that for every n it holds

that Pn ⊂ Pn+1 and Sn ⊂ Sn+1.

By suitably adapting the proofs of Propositions 4.1 and 4.2 of [43] (see also Theorems

1 and 2 in [18]), we get the following result.

Proposition 2.5. For every u ∈ C0,β(Ω∗) ∩ W 1,p(Ω∗) such that u|K ∈ D(Ep) there

exists a sequence of piecewise affine functions Inu interpolating u in the nodes of Vn

which converges to u in W 1,p(Ω∗) and satisfies the estimate

|Inu(P )− Inu(Q)| ≤ C|P −Q|β for every P,Q ∈ Pn, (2.6)

where the constant C is independent from n. Moreover, Inu(P ) = u(P ) ∀P ∈ Vn.

We now prove the M-convergence result.
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Figure 2: A possible example of P̂l and Q̃l.

Theorem 2.6. Let δn = (31−df )n =
(
3
4

)n
and ε ≡ εn be a sequence converging to 0

as n → +∞. Let Φ and Φ
(n)
ε be defined as in (2.5) and (2.2) respectively. Then Φ

(n)
ε

M-converges to the functional Φ as n→ +∞.

Proof. 1) Limsup condition: We can suppose that u ∈ D(Φ) since if u /∈ D(Φ) then

Φ[u] = +∞ and the thesis would trivially hold.

We first assume that u ∈ C0,β(Ω∗), where we recall that β = df (1 − 1
p
). We have to

construct a sequence un strongly converging in L2(Ω∗) to u.

We define the following operator

Gε : C
0,β(Ω∗) ∩W 1,p(Ω∗) → C0,β(Ω∗) ∩W 1,p(Ω∗)

which acts on Ωn
ε . Let (xl, yl) denote the orthogonal projection of (x, y) ∈ Σl,2ε on Sl,

for l = 1, 2, 3. Then, for every point P = (x, y) of Σl,2ε\Σl,ε, we set P̂l = (x̂l, ŷl) ∈ ∂Σl,ε

and Q̃l = (x̃l, ỹl) ∈ ∂Σl,2ε to be the intersections between the straight line orthogonal

to Sl at (xl, yl) and ∂Σl,ε \ Sl and ∂Σl,2ε \ Sl respectively (see Figure 2).

Hence, for g ∈ C0,β(Ω∗), we define

Gε(g(x, y)) =


g(x, y) if (x, y) ∈ Ω∗ \ Σl,2ε,

I0g(xl, yl) if (x, y) ∈ Σl,ε,

I0g(xl, yl)tl + g(Q̃l)(1− tl) if (x, y) ∈ Σl,2ε \ Σl,ε,

(2.7)

where

tl =
|ỹl − y|+ |x̃l − x|
|ỹl − ŷl|+ |x̃l − x̂l|

.

We now set

un =

Inu if (x, y) ∈ Ω∗ \ Σn
2ε,

Gε(Inu ◦ ψi|n) ◦ ψ−1
i|n if (x, y) ∈ Σn

2ε,
(2.8)

where Inu is the interpolating function given by Proposition 2.5.
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We point out that, since u is Hölder continuous on Ω∗, from the definition of un it

follows that

max
Σn

2ε

|un| ≤ ∥u∥L∞(Ω∗). (2.9)

Hence

∥un − u∥2L2(Ω∗) = ∥Inu− u∥2L2(Ω∗\Σn
2ε)

+

∫
Σn

2ε

|un − u|2 dL2

≤ ∥Inu− u∥2L2(Ω∗) + C

(
max
Σn

2ε

|un|2 +max
Σn

2ε

|u|2
)
|Σn

2ε|;

since |Σn
2ε| → 0 as n → +∞, from (2.9) and Proposition 2.5 we get that un converges

to u strongly in L2(Ω∗).

According to the definition of un and anε , we split the functional Φ
(n)
ε as follows:

Φ(n)
ε [un] =

1

p

∫
Ωn

|Inu|p dL2 +
1

p

∫
Σn

2ε\Σn
ε

|un|p dL2 +
1

p

∫
Σn

ε

|un|p dL2

+
1

p

∫
Ωn

|∇Inu|p dL2 +
1

p

∫
Σn

2ε\Σn
ε

|∇un|p dL2 +
δ1−pn

p

∫
Σn

ε

wnε |∇un|p dL2.

Since the domain Ωn tends to the fractal domain Ω as n → +∞, from the properties

of the interpolating functions we get that

lim
n→+∞

1

p

∫
Ωn

|Inu|p dL2 =
1

p

∫
Ω

|u|p dL2 and lim
n→+∞

1

p

∫
Ωn

|∇Inu|p dL2 =
1

p

∫
Ω

|∇u|p dL2

We should prove that

lim
n→+∞

∫
Σn

2ε\Σn
ε

|un|p dL2 = lim
n→+∞

∫
Σn

ε

|un|p dL2 = 0, (2.10)

lim
n→+∞

∫
Σn

2ε\Σn
ε

|∇un|p dL2 = 0 (2.11)

and

lim
n→+∞

δ1−pn

p

∫
Σn

ε

wnε |∇un|p dL2 ≤ Ep[u]. (2.12)

We begin by proving (2.10) and (2.11). We point out that by definition

Σn
ε =

⋃
i|n

Σi|n
ε and Σn

2ε =
⋃
i|n

Σ
i|n
2ε .

12



Moreover, we can decompose Σn
2ε \Σn

ε in the sum of three rectangles and six triangles;

hence ∫
Σn

2ε\Σn
ε

=
⋃
i|n

∫
Σ

i|n
2ε \Σi|n

ε

=
⋃
i|n

 3∑
l=1

∫
ψi|n(Rl)

+
3∑
l=1

2∑
j=1

∫
ψi|n(Tl,j)

 . (2.13)

We start with the integrals on the rectangles. Since the computations are similar, we

explicitly compute only the integral on the rectangle R1, which has as vertices P1, P2,

Q1 and Q2. We enumerate the other rectangles starting from R1 going counterclock-

wise.

We set g(x, y) := (Inu ◦ ψi|n)(x, y). On R1, from Proposition 2.5, the function

Gε(g(x, y)) is defined as follows:

Gε(g(x, y)) =

− 2y√
3

(
u(ψi|n(A)) + u(ψi|n(B))− 2u(ψi|n(D))

)
+2

(
u(ψi|n(A))(1− x) + u(ψi|n(B))x

)
−(

u(ψi|n(A))

(
1− x+

ε√
3

)
+ u(ψi|n(B))

(
x+

ε√
3

)
− u(ψi|n(D))

2ε√
3

)
.

We recall that u ∈ C0,β(Ω∗) by hypothesis. By a change of variables and integrating,

we get∫
ψi|n(R1)

|Gε(g)|p dL2 ≤ Θ1
p

{
3−2n3−nβp

(
1− 2ε

C1

)
εp+1 + 3−2n3−nβp

ε

2

[(
1− ε

C1

)p+1

− εp+1

Cp+1
1

]
+ 3−2n|R1|

}
,

(2.14)

where Θ1
p is a suitable positive constant which depends in particular on p and on the

Hölder constant of u.

We now compute (Gε(g))x and (Gε(g))y; since u ∈ C0,β(Ω∗), we have that both deriva-

tives are bounded by constants not depending on ε. Hence we get∫
ψi|n(R1)

|∇Gε(g)|p dL2 ≤ 3n(p−2)Cp
HC

∗
p3

−nβp|R1| = 3n(p−2)Cp
HC

∗
p3

−nβp
(
1− 2ε

C1

)
ε

2
,

(2.15)

where C∗
p is a constant depending on p and CH is the Hölder constant of u.

We pass now to the integrals on the triangles. As above, we explicitly compute the

integral on the triangle T1,1 of vertices A, P1 and Q1; the other triangles can be com-

puted similarly.

On T1, the function Gε(g(x, y)) is defined as follows:

Gε(g(x, y)) =

− 2y√
3

(
u(ψi|n(A)) + u(ψi|n(B))− 2u(ψi|n(D))

)
+2

(
u(ψi|n(A))(1− x) + u(ψi|n(B))x

)
−

13



(
u(ψi|n(A))

(
1− x+

C1x√
3

)
+ u(ψi|n(B))

(
x+

C1x√
3

)
− u(ψi|n(D))

2C1x√
3

)
.

By changing the variables and integrating, we get∫
ψi|n(T1,1)

|Gε(g)|p dL2 ≤ Θ2
p

(
3−2n3−nβpεp+2 + 3−2nε2

)
, (2.16)

where Θ2
p is a suitable positive constant which depends in particular on p and on the

Hölder constant of u.

As before, (Gε(g))x and (Gε(g))y are bounded by constant not depending on ε. Hence

we get

∫
ψi|n(T1,1)

|∇Gε(g)|p dL2 ≤ 3n(p−2)Cp
HĈp3

−nβp

ε
C1∫
0

C1x

2
dx = 3n(p−2)Cp

HĈp3
−nβp ε

2

4C1

.

(2.17)

From (2.14), (2.16) and (2.13) we get that there exists a suitable positive constant Θp

such that∫
Σn

2ε\Σn
ε

|un|p dL2 =
∑
i|n

∫
Σ

i|n
2ε \Σi|n

ε

|un|p dL2 ≤
∑
i|n

Θp3
−2n(3−nβp+1)ε = Θpε

(
3−2n

4n(p−2)
+

4n

32n

)
,

thus proving the first part of (2.10). The second assertion of (2.10), namely that

lim
n→+∞

∫
Σn

ε

|un|p dL2 = 0,

can be proved in a similar way.

From (2.15), (2.17) and (2.13) we get∫
Σn

2ε\Σn
ε

|∇un|p dL2 =
∑
i|n

∫
Σ

i|n
2ε \Σi|n

ε

|∇un|p dL2 ≤
∑
i|n

3n(p−2)Cp
HC̃pε3

−nβp = Cp
HC̃pε

3n(p−2)

4n(p−2)
,

thus proving (2.11).

We have now to prove (2.12). By proceeding as above, we split the integrals on Σn
ε in

the sum of integrals on triangles and rectangles:

δ1−pn

p

∫
Σn

ε

wnε |∇un|p dL2 =
δ1−pn

p

⋃
i|n

∫
Σ

i|n
ε

wnε |∇un|p dL2 =
δ1−pn

p

⋃
i|n

 3∑
l=1

∫
ψi|n(Rl)

+
3∑
l=1

2∑
j=1

∫
ψi|n(Tl,j)

 .
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As before, we perform the calculations on Σ1,ε. With an abuse of notation, let R1 be

the rectangle of vertices P1, P2, P3 = ( ε
C1
, 0) and P4 = (1− ε

C1
, 0). We point out that

on ψi|n(Σ1,ε), w
n
ε = 3n ℓ−1

ε (x) with

ℓε(x) =



C1x

2p + Cp
1

0 < x < ε
C1
,

ε

2
ε
C1
< x < 1− ε

C1
,

C1 − C1x

2p + Cp
1

1− ε
C1
< x < 1.

If Gε(g(x, y)) is defined as in the above case of the rectangle, recalling the definition of

δn we have that

δ1−pn

p

∫
ψi|n(R1)

wnε |∇un|p dL2 =

δ1−pn

p

2 · 3n

ε
3n(p−2)

1− ε
C1∫

ε
C1

0∫
− ε

2

∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p dy dx =

4n(p−1)

p

2

ε

(
1− 2ε

C1

)
ε

2

∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p.

Again with an abuse of notation, now let T1,1 be the triangle of vertices A, P1 and P3.

Hence we can compute the integral on T1,1 as follows:

δ1−pn

p

∫
ψi|n(T1,1)

wnε |∇un|p dL2 =

δ1−pn

p

3n(2p + Cp
1 )

C1

3n(p−2)

ε
C1∫
0

0∫
−C1x

2

∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p

x
dy dx =

4n(p−1)

p

2p + Cp
1

2

ε

C1

∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p.

Proceeding counterclockwise from T1,1, we denote by T1,2 the triangle of vertices B, P2

and P4. Then we have that

δ1−pn

p

∫
ψi|n(T1,2)

wnε |∇un|p dL2 =

δ1−pn

p

3n(2p + Cp
1 )

2
3n(p−2)

1∫
1− ε

C1

0∫
C1(x−1)

2

∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p

C1 − C1x
dy dx =

4n(p−1)

p

2p + Cp
1

2

ε

C1

∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p.
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Summing the above integrals, we get

δ1−pn

p

∫
ψi|n(Σ1,ε)

wnε |∇un|p dL2 =

4n(p−1)

p

(
1− 2ε

C1

+ (2p + Cp
1 )
ε

C1

) ∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p.

By applying the above reasoning to the other integrals, setting Cp := 2p + Cp
1 − 2 we

have

δ1−pn

p

∫
Σn

ε

wnε |∇un|p dL2 =

(
1 +

ε

C1

Cp

)
4n(p−1)

p

∑
i|n

(∣∣u(ψi|n(A))− u(ψi|n(B))
∣∣p

+
∣∣u(ψi|n(B))− u(ψi|n(C))

∣∣p + ∣∣u(ψi|n(A))− u(ψi|n(C))
∣∣p) .

Taking into account the definition of Ep, we get that

δ1−pn

p

∫
Σn

ε

wnε |∇un|p dL2 ≤
(
1 +

ε

C1

Cp

)
Ep[u],

and by taking the limit for n→ +∞ we get (2.12), since ε ≡ εn → 0.

We now remove the assumption u ∈ C0,β(Ω∗). From Lemma 2.4, for every u ∈ D(Φ)

there exists a sequence of functions ûm ∈ C0,β(Ω∗) which converges strongly to u both

in L2(Ω∗) and in W 1,p(Ω) for m → +∞ and such that ûm = u on K. From the first

part of the proof, for every function ûm ∈ C0,β(Ω∗) there exists a sequence of functions

ûm,n ∈ L2(Ω∗) such that

lim
n→+∞

∥ûm,n − ûm∥L2(Ω∗) = 0 and lim
n→∞

Φ(n)
ε [ûm,n] ≤ Φ[ûm]. (2.18)

From the properties of ûm and (2.18) we get

Φ[u] =
1

p

∫
Ω

|u|p dL2 +
1

p

∫
Ω

|∇u|p dL2 + Ep[u] = lim
m→+∞

1

p

∫
Ω

|ûm|p dL2 +
1

p

∫
Ω

|∇ûm|p dL2 + Ep[ûm]


= lim

m→+∞
Φ[ûm] ≥ lim

m→+∞

(
lim
n→∞

Φ(n)
ε [ûm,n]

)
.

In addition to that, by direct calculations we have that

lim
m→+∞

(
lim

n→+∞
∥ûm,n − u∥L2(Ω∗)

)
= 0.

We now use the diagonal formula given in Corollary 1.16 in [2]. There exists a strictly

increasing mapping n 7→ m(n) such that m(n) → +∞ when n → +∞ such that, by

putting un = um(n),n

lim
n→+∞

∥un − u∥L2(Ω∗) = 0 and lim
n→∞

Φ(n)
ε [un] ≤ Φ[u],
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thus proving the thesis.

2) Liminf condition: Let vn be a weakly converging sequence to u in L2(Ω∗). We

can suppose that vn ∈ W 1,p(Ωn
ε , a

n
ε ) and

lim
n→∞

Φ(n)
ε [vn] <∞

(otherwise the thesis follows trivially). We first assume that vn ∈ C1(Ωn
ε ) for every

n ∈ N. Then there exists a constant c independent of n and ε such that

Φ(n)
ε [vn] =

1

p

∫
Ωn

ε

|vn|p dL2 +
1

p

∫
Ωn

|∇vn|p dL2 +
1

p

∫
Σn

2ε

anε |∇vn|p dL2 ≤ c. (2.19)

We point out that, from (2.19), we can suppose that ∥vn∥W 1,p(Ωn) ≤ C, where C is

independent of n. For every n ∈ N from Theorem 1.1 there exists a bounded linear

operator ExtJ : W
1,p(Ωn) → W 1,p(R2) such that

∥ExtJ vn∥W 1,p(R2) ≤ C ∥vn∥W 1,p(Ωn) ≤ C,

with C independent of n.

We denote by v̂n = ExtJ vn|Ω. Then v̂n ∈ W 1,p(Ω) and ∥v̂n∥W 1,p(Ω) ≤ C; hence there

exists a subsequence, still denoted by v̂n, weakly converging to v̂ in W 1,p(Ω). We

point out that v̂n strongly converges to v̂ in Lp(Ω) and also in L2(Ω) since p ≥ 2. By

proceeding as in the proof of condition a) of [15, Theorem 3.5], we prove that v̂ = u

a.e. on Ω, hence in particular v̂n weakly converges to u in W 1,p(Ω).

As in [15], this implies that χΩn∇vn weakly converges to ∇u in Lp(Ω) and, from the

lower semicontinuity of the norm, we get that

lim
n→∞

∫
Ωn

|∇vn|p dL2 ≥
∫
Ω

|∇u|p dL2.

Analogously, we can prove that χΩnvn weakly converges to u in Lp(Ω). Therefore, we

obtain that

lim
n→∞

∫
Ωn

ε

|vn|p dL2 ≥ lim
n→∞

∫
Ωn

|vn|p dL2 ≥
∫
Ω

|u|p dL2.

In the notations of the limsup part of the proof, we now introduce an operator

Mε : C
1(Σε) → C0,1(T 0) defined for every 0 < ε < ε0. Let Lε be the segment given by

the intersection between Σl,ε and the straight line orthogonal to Sl at the point (xl, yl)

and let ℓε be its length. Hence, if P = (x, y) ∈ T 0 \ V0, we set

Mε(h(xl, yl)) =
1

ℓε

∫
Lε

h(x(ℓ), y(ℓ)) dℓ. (2.20)
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If P ∈ V0, we put Mε(h(P )) = h(P ). With this definition, it holds that Mε(h) ∈
C0,1(T 0).

We now set

ṽn(x, y) = Mε(vn ◦ ψi|n) ◦ ψ−1
i|n (x, y). (2.21)

We point out that vn and ṽn coincide on the set of vertices Vn. We start by proving

the following

E (n)
p [ṽn] ≤

δ1−pn

p

∫
Σn

ε

|∇vn|pwnε dL2. (2.22)

By proceeding as in [15], we can prove that

E (n)
p [ṽn] =

4(p−1)n

p

3N∑
j=1

(ṽn(Pj+1)− ṽn(Pj))
p ≤ 1

p

(
4

3

)(p−1)n 3N∑
j=1

∫
Mj

|∇ṽn|p dℓ, (2.23)

where N = 4n and Mj, for j = 1, . . . , 3N , are the segments of Kn.

We make the explicit computations only on the term ψi|n(AB). We set h(x, y) =

(vn ◦ ψi|n)(x, y). By a change of variables, we have that∫
ψi|n(AB)

|∇ṽn|p dℓ = 3n(p−1)

1∫
0

|∇xMε(h(x, 0))|p dx.

By using the definition of Mε we can split the above integral as follows:

1∫
0

|∇xMε(h(x, 0))|p dx =

ε
C1∫
0

 2

C1x

0∫
−C1x

2

h(x, y) dy


p

x

dx

+

1− ε
C1∫

ε
C1

2

ε

0∫
− ε

2

h(x, y) dy


p

x

dx+

1∫
1− ε

C1

 2

C1 − C1x

0∫
C1x−C1

2

h(x, y) dy


p

x

dx =: I1 + I2 + I3.

We start by evaluating I2. Let R1 be the rectangle of vertices P1, P2, P3 and P4 (in

the notations of the limsup part). By applying Hölder inequality, we get

I2 ≤
2

ε

1− ε
C1∫

ε
C1

0∫
− ε

2

|hx(x, y)|p dydx.

Moreover, since on ψi|n(R1) it holds that w
n
ε (x, y) =

2·3n
ε
, we have

3n(p−1)I2 ≤
2 · 3n(p−1)

ε

1− ε
C1∫

ε
C1

0∫
− ε

2

|∇h(x, y)|p dydx ≤
∫

ψi|n(R1)

|∇vn|pwnε dL2. (2.24)
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We now switch to I1. In the notations of the limsup part, let T1,1 be the triangle of

vertices A, P1 and P3. Let

F (x) =
2

C1x

0∫
−C1x

2

h(x, y) dy.

Then we have that

F ′(x) = − 2

C1x2

0∫
−C1x

2

h(x, y) dy +
2

C1x


0∫

−C1x
2

hx(x, y) dy +
C1

2
h

(
x,−C1x

2

)
= − 2

C1x2

0∫
−C1x

2

h(x, y) dy +
2

C1x

0∫
−C1x

2

hx(x, y) dy +
1

x
h

(
x,−C1x

2

)
.

Since h(x, y) = (vn ◦ ψi|n)(x, y) belongs to C1(Ωn
ε ) by hypothesis, from the mean value

theorem we get that

F ′(x) =
2

C1x

0∫
−C1x

2

hx(x, y) dy −
1

x

(
h(x, ξ)− h

(
x,−C1x

2

))
,

for some ξ ∈ [−C1x
2
, 0]. Hence

F ′(x) =
2

C1x

0∫
−C1x

2

hx(x, y) dy −
1

x

ξ∫
−C1x

2

hy(x, y) dy.

Going back to I1, by using the convexity of the map t → |t|p and Hölder inequality
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and recalling that ξ ∈ [−C1x
2
, 0] we get

I1 =

ε
C1∫
0

|F ′(x)|p dx ≤ 2p−1

ε
C1∫
0

 2p

Cp
1x

p


0∫

−C1x
2

hx(x, y) dy


p

+
1

xp


ξ∫

−C1x
2

hy(x, y) dy


p  dx

≤ 2p−1

ε
C1∫
0

 2p

Cp
1x

p

0∫
−C1x

2

|hx(x, y)|p dy
(
C1x

2

)p−1

+
1

xp

ξ∫
−C1x

2

|hy(x, y)|p dy
(
ξ +

C1x

2

)p−1

 dx

≤ 2p−1

ε
C1∫
0

 2

C1x

0∫
−C1x

2

|hx(x, y)|p dy +
Cp−1

1

2p−1x

0∫
−C1x

2

|hy(x, y)|p dy

 dx

=

ε
C1∫
0

 2p

C1x

0∫
−C1x

2

|hx(x, y)|p dy +
Cp−1

1

x

0∫
−C1x

2

|hy(x, y)|p dy

 dx

≤

ε
C1∫
0

2p + Cp
1

C1x

0∫
−C1x

2

(|hx(x, y)|p + |hy(x, y)|p) dydx.

Since wnε (x, y) =
3n(2p+Cp

1 )

C1x
on ψi|n(T1,1), we have that

3n(p−1)I1 ≤ 3n(p−1)

ε
C1∫
0

2p + Cp
1

C1x

0∫
−C1x

2

|∇h(x, y)|p dydx ≤
∫

ψi|n(T1,1)

|∇vn|pwnε dL2. (2.25)

We now estimate I3. Again in the notations of the limsup part, let T1,2 be the triangle

of vertices B, P2 and P4. Let

G(x) :=
2

C1 − C1x

0∫
C1x−C1

2

h(x, y) dy.

20



Then

G′(x) =
2C1

(C1 − C1x)2

0∫
C1x−C1

2

h(x, y) dy +
2

C1 − C1x


0∫

C1x−C1
2

hx(x, y) dy −
C1

2
h

(
x,
C1x− C1

2

)

=
2C1

(C1 − C1x)2

0∫
C1x−C1

2

h(x, y) dy +
2

C1 − C1x

0∫
C1x−C1

2

hx(x, y) dy −
C1

C1 − C1x
h

(
x,
C1x− C1

2

)
.

Again from the mean value theorem, we get that

G′(x) =
2

C1 − C1x

0∫
C1x−C1

2

hx(x, y) dy +
C1

C1 − C1x

(
h(x, ξ)− h

(
x,
C1x− C1

2

))
,

for some ξ ∈ [C1x−C1

2
, 0]. Hence

G′(x) =
2

C1 − C1x

0∫
C1x−C1

2

hx(x, y) dy +
C1

C1 − C1x

ξ∫
C1x−C1

2

hy(x, y) dy.
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As above, we can estimate I3 as follows:

I3 =

1∫
1− ε

C1

|G′(x)|p dx

≤ 2p−1

1∫
1− ε

C1

 2p

(C1 − C1x)p


0∫

C1x−C1
2

hx(x, y) dy


p

+
Cp

1

(C1 − C1x)p


ξ∫

C1x−C1
2

hy(x, y) dy


p  dx

≤ 2p−1

1∫
1− ε

C1

2p(C1 − C1x)
p−1

2p−1(C1 − C1x)p

0∫
C1x−C1

2

|hx(x, y)|p dy +
Cp

1

(C1 − C1x)p

ξ∫
C1x−C1

2

|hy(x, y)|p dy
(
ξ +

C1 − C1x

2

)p−1

 dx

≤ 2p−1

1∫
1− ε

C1

 2

C1 − C1x

0∫
C1x−C1

2

|hx(x, y)|p dy +
Cp

1

2p−1(C1 − C1x)

0∫
C1x−C1

2

|hy(x, y)|p dy

 dx

=

1∫
1− ε

C1

 2p

C1 − C1x

0∫
C1x−C1

2

|hx(x, y)|p dy +
Cp

1

C1 − C1x

0∫
C1x−C1

2

|hy(x, y)|p dy

 dx

≤
1∫

1− ε
C1

2p + Cp
1

C1 − C1x

0∫
C1x−C1

2

(|hx(x, y)|p + |hy(x, y)|p) dydx.

Since wnε (x, y) =
3n(2p+Cp

1 )

C1−C1x
on ψi|n(T1,2), we have that

3n(p−1)I3 ≤ 3n(p−1)

1∫
1− ε

C1

2p + Cp
1

C1 − C1x

0∫
C1x−C1

2

|∇h(x, y)|p dydx ≤
∫

ψi|n(T1,2)

|∇vn|pwnε dL2.

(2.26)

By iterating the reasoning of (2.25), (2.24) and (2.26) to the other segments, from

(2.23) we obtain (2.22).

By proceeding as in [15, Proposition 3.8], we have that ṽn is equi-Hölder continuous

on Kn with exponent β =
df
p′
. Hence the function ṽn is defined on the discrete set Vn,

so we extend it to a continuous function Hṽn on K. This extension is unique and it

is obtained by constructing the discrete harmonic extension Hṽn|V⋆ of ṽn|Vn to the set

V⋆ and then taking the unique continuous extension of Hṽn|V⋆ to K. This iterative
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process is known as decimation in the physics literature (see [26], [27] and also [6]).

By proceeding as in the proof of Theorem 3.5 in [15] (liminf part), we can prove that

Ep[u] ≤ lim
n→∞

Ep[Hṽn]. (2.27)

From the properties of harmonic extensions, in particular it follows that

Ep[Hṽn] = E (n)
p [ṽn|Vn ].

This, along with (2.22), implies that

Ep[u] ≤ lim
n→∞

δ1−pn

p

∫
Σn

ε

|∇vn|pwnε dL2. (2.28)

The thesis then follows from the liminf properties of the sum.

We now remove the assumption vn ∈ C1(Ωn
ε ) for every n ∈ N. We have that C1(Ωn

ε )

is dense in W 1,p(Ωn
ε , a

n
ε ) and in L2(Ωn

ε ); hence, there exists v∗n ∈ C1(Ωn
ε ) such that for

every vn ∈ W 1,p(Ωn
ε , a

n
ε )∣∣Φ(n)

ε [v∗n]− Φ(n)
ε [vn]

∣∣ ≤ 1

n
and ∥v∗n − vn∥L2(Ωn

ε )
≤ 1

n
. (2.29)

Let now vn be weakly converging to u in L2(Ω∗). We set

v̄∗n :=

v∗n in Ωn
ε ,

u in Ω∗ \ Ωn
ε .

We point out that (2.29) implies that also v̄∗n converges weakly to u in L2(Ω∗). Indeed,

for every φ ∈ L2(Ω∗)∫
Ω∗

(v̄∗n − u)φ dL2 =

∫
Ω∗

(v̄∗n − vn)φ dL2 +

∫
Ω∗

(vn − u)φ dL2 =

∫
Ω∗\Ωn

ε

(u− vn)φ dL2

+

∫
Ωn

ε

(v∗n − vn)φ dL2 +

∫
Ω∗

(vn − u)φ dL2.

The second term on the right-hand side of the above equality tends to zero from (2.29)

and the third term also vanishes from the weak convergence of vn to u in L2(Ω∗). As

to the first term, we have that∫
Ω∗\Ωn

ε

(u− vn)φ dL2 =

∫
Ω∗\Ω

(u− vn)φ dL2 −
∫

Ωn
ε \Ω

(u− vn)φ dL2 +

∫
Ω\Ωn

ε

(u− vn)φ dL2;
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the first term vanishes from the weak convergence, while the second and third terms

vanish since |Ωn
ε \Ω| −−−−→

n→+∞
0 and vn is equibounded. Hence v̄∗n converges weakly to u

in L2(Ω∗).

Now, since v̄∗n weakly converges to u in L2(Ω∗) and v∗n ∈ C1(Ωn
ε ), from the first part of

the liminf proof we have that

Φ[u] ≤ lim
n→∞

Φ(n)
ε [v∗n].

Hence, we get from (2.29)

lim
n→∞

Φ(n)
ε [vn] = lim

n→∞

(
Φ(n)
ε [vn]− Φ(n)

ε [v∗n] + Φ(n)
ε [v∗n]

)
≥ lim

n→∞

(
Φ(n)
ε [vn]− Φ(n)

ε [v∗n]
)
+ lim

n→∞
Φ(n)
ε [v∗n]

= 0 + lim
n→∞

Φ(n)
ε [v∗n] ≥ Φ[u].

3 Existence, uniqueness and convergence results

From now on, let f ∈ Lp
′
(Ω∗).

Let now

Φ(n)
ε (u, v) =

∫
Ωn

ε

|u|p−2u v dL2 +

∫
Ωn

ε

anε (x, y)|∇u|p−2∇u∇v dL2

and

Φ(u, v) =

∫
Ω

|u|p−2u v dL2 +

∫
Ω

|∇u|p−2∇u∇v dL2 + Ep(u, v).

We say that problem (P n
ε ) formally stated before admits a weak solution unε ∈

W 1,p(Ωn
ε , a

n
ε ) if it satisfies

Φ(n)
ε (unε , v) =

∫
Ωn

ε

fv dL2 ∀ v ∈ W 1,p(Ωn
ε , a

n
ε ).

We recall that Proposition 2.1 in particular implies that Φn
ε is coercive. Hence, from

Theorems 1.5.6 and 1.5.8 in [3], Φn
ε admits a unique minimum point unε ∈ W 1,p(Ωn

ε , a
n
ε ).

Integrating by parts, we prove that such unique minimum point is also the unique weak
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solution of problem (P n
ε ) in the following sense: for f ∈ Lp

′
(Ω∗)

(P n
ε )



− div(anε (x, y)|∇unε |p−2∇unε ) + |unε |p−2unε = f a.e. in Ωn
ε ,

[unε ] = 0 on Kn and on Γnε ,〈
|∇unε |p−2∂u

n
ε

∂ν1
, v

〉
W

− 1
p′ ,p

′
(Kn),W

1
p′ ,p(Kn)

+

〈
|∇unε |p−2∂u

n
ε

∂ν3
, v

〉
W

− 1
p′ ,p

′
(∂Λn

ε ),W
1
p′ ,p(∂Λn

ε )

+δ1−pn

〈
wnε (x, y)|∇unε |p−2∂u

n
ε

∂ν2
, v

〉
W

− 1
p′ ,p

′
(∂Σn

ε ),W
1
p′ ,p(∂Σn

ε )

= 0 for every v ∈ W 1,p(Ωn
ε ),

where Λnε := Σn
2ε \Σn

ε and ν1, ν2 and ν3 denote the outward unit normal vectors to Ωn,

Σn
ε and Λnε respectively.

We say that the fractal problem admits a weak solution u ∈ D(Φ) if it satisfies

Φ(u, v) =

∫
Ω

fv dL2 ∀ v ∈ D(Φ).

We recall that Proposition 2.2 in particular implies that Φ is coercive. As in the pre-

homogenized case, Φ admits a unique minimum point u ∈ D(Φ) which is the unique

weak solution of problem (P ) in the following sense:

(P̄ )


−∆pu+ |u|p−2u = f a.e. in Ω,

Ep(u, v) +
〈
∂u

∂ν
|∇u|p−2, v

〉
(B

p,p
α (K))′,Bp,p

α (K)

= 0 for every v ∈ D(Ep).

The following convergence result holds.

Theorem 3.1. Let unε ≡ un and u be the unique weak solutions of problems (P n
ε ) and

(P̄ ) respectively. Then χΩn
ε
un −−−−→

n→+∞
u in L2(Ω∗).

Proof. Since Φ
(n)
ε M-converges to Φ in L2(Ω∗), from Theorem 1.10 in [2] we have that

every cluster point of the sequence {un} is a minimum point for Φ. Since u is the

unique minimum of Φ, it follows that u is the unique cluster point of {un}.
We point out that, by standard techniques, we get that the unique solution un of (P n

ε )

is equibounded in W 1,p(Ωn
ε , a

n
ε ); moreover, from the properties of anε (x, y), un is also

equibounded in W 1,p(Ωn
ε ).

We denote by ūn the trivial extension of un to Ω∗. Since p ≥ 2, from the above results

we have that

∥ūn∥H1(Ω∗) ≤ C,
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where C is a positive constant independent from n and ε. This implies that ūn admits

a subsequence, which we still denote by ūn, which converges to a function u∗ weakly

in H1(Ω∗) and strongly in L2(Ω∗). From the uniqueness of the cluster point of the

sequence {un}, we have that u∗|Ω ≡ u, hence we have that χΩn
ε
un → u strongly in

L2(Ω∗) as n→ +∞.
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[7] R. Capitanelli, Nonlinear energy forms on certain fractal curves, J. Nonlinear Convex

Anal., 3 (2002), 67–80.

[8] R. Capitanelli, Robin boundary condition on scale irregular fractals, Commun. Pure

Appl. Anal., 9 (2010), 1221–1234.

26



[9] R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J.

Math. Anal. Appl., 362 (2010), 450–459.

[10] R. Capitanelli, M. R. Lancia, Nonlinear energy forms and Lipschitz spaces on the Koch

curve, J. Convex Anal., 9 (2002), 245–257.

[11] R. Capitanelli, M. A. Vivaldi, Dynamical quasi-filling fractal layers, SIAM J. Math.

Anal., 48 (2016), 3931–3961.

[12] M. Cefalo, S. Creo, M. R. Lancia, P. Vernole, Nonlocal Venttsel’ diffusion in fractal-type

domains: regularity results and numerical approximation, Math. Methods Appl. Sci., 42

(2019), 14, 4712–4733.

[13] S. Creo, M. R. Lancia, A. I. Nazarov, Regularity results for nonlocal evolution Venttsel’

problems, Fract. Calc. Appl. Anal., 23 (2020), 5, 1416–1430.

[14] S. Creo, M. R. Lancia, A. I. Nazarov, P. Vernole, On two-dimensional nonlocal Venttsel’

problems in piecewise smooth domains, Discrete Contin. Dyn. Syst. Series S, 12 (2019),

1, 57–64.
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[31] M. R. Lancia, A. Vélez-Santiago, P. Vernole, Quasi-linear Venttsel’ problems with non-

local boundary conditions on fractal domains, Nonlinear Anal. Real World Appl., 35

(2017), 265–291.
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