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Abstract

We study a Stokes flow in a cylindrical-type fractal domain with homogeneous

Dirichlet boundary conditions. We consider its numerical approximation by

mixed methods: finite elements in space and finite differences in time. We intro-

duce a suitably refined mesh à la Grisvard, which in turn will allow us to obtain

an optimal a priori error estimate.
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Introduction

In this paper we study an incompressible Stokes equation, coupled with no-slip bound-

ary conditions, in a three-dimensional cylindrical domain, which is the cartesian prod-

uct between a two-dimensional pre-fractal domain of Koch type and the unit interval.

This cylindrical set, which is polyhedral and non-convex, can model a rough micro-

channel.
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Nowadays, many papers deal with the study of viscous flows in rough micro-channels;

this is due to the fast development of the so-called MEMS (which stands for Micro

Electro-Mechanical Systems), e.g. micro-motors micro-turbines. Usually, Stokes equa-

tions model these phenomena.

The characteristics of the flow deeply affect the design and the process control of MEMS

and heat transfer processes [31, 35, 37]. Fractal-type structures in the study of Stokes

problems can be of great interest from the point of view of applications, firstly because

they can model rough and irregular geometries, secondly because they could be impor-

tant in the design of microfluidic devices. In fact, the mechanical stress exerted by the

fluid onto solid boundaries is significant, when a large value of the velocity gradient to-

wards the wall is achieved [33]. In this context, fractal-type geometries could mitigate

these effects.

The study of Stokes problems in irregular domains is part of a long term project:

the study of vector BVPs in fractal domains. This topic is rather recent and it is

fast developing; for some literature on vector BVPs in irregular domains, we refer to

[1, 20, 21, 27, 8, 9]. As to the study of scalar BVPs in fractal-type domains, among

the others we refer to [26, 25, 11, 13, 10, 12].

The main focus of this paper is on the numerical approximation of Stokes problems

in fractal-type structures and on the proof of optimal a priori error estimates both in

space and in time. We point out that the irregular nature of fractal-type boundaries

does not allow us to use the standard techniques because the presence of irregular

geometries deteriorates the regularity of the solution. For the numerical approximation

of boundary value problems in fractal domains we refer to [5, 7, 4].

More precisely, for every n ∈ N, we consider parabolic incompressible Stokes problems

(P̃n) in a cylindrical domain Qn with a Koch-type cross section (see Section 1), with

homogeneous Dirichlet boundary conditions:

(P̃n)



∂un
∂t

(t, x)−∆un(t, x) +∇pn(t, x) = fn(t, x) in [0, T ]×Qn,

div un(t, x) = 0 on [0, T ]×Qn,

un(t, x) = 0 on [0, T ]× ∂Qn,

un(0, x) = u0
n(x) in Qn.

Existence and uniqueness results for the weak solution un of (P̃n) and for its associated

pressure pn, for every n ∈ N, are provided in [27], along with the corresponding results

in the limit fractal domain Q (obtained in the limit as n→ +∞). Moreover, it is proved

that the couple (u, p), given by the solution of the Stokes problem in the fractal domain

and by its associated pressure, can be suitably approximated in terms of (un, pn).

The numerical approximation of problem (P̃n) is carried out by mixed methods, namely
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finite elements in space and finite differences in time. Since Qn is a non-convex domain,

in order to prove an optimal a priori error estimate for the semi-discrete error, we

construct a suitable mesh à la Grisvard [17], thus extending to the 3D case the results

of [6]. We adapt to our case the regularity results in weighted Sobolev spaces for the

couple (un, pn) provided in [3], where a non-conforming method on pentahedral and

tetrahedral meshes is obtained by using Crouziex-Raviart interpolation operators [14].

We then discretize the problem in time by an implicit method. We obtain optimal a

priori error estimates by means of suitable discrete Sobolev-type norms (see [19, 18]).

We conclude by presenting some numerical simulations. Moreover, we prove that the

average wall shear stress vanishes as n→ +∞ for Hagen-Poiseuille-like flows.

The paper is organized as follows. In Section 1 we introduce the functional setting

of this paper. In Section 2 we recall the existence and uniqueness results for the

solution of problem (Pn) and its associated pressure and we introduce two equivalent

weak formulations, which allow us to give an “efficient” discrete version of the space

of divergence-free functions. In Section 3 we introduce the weighted Sobolev spaces

and we recall the regularity results for the couple (un, pn). In Section 4 we prove that

the average wall shear stress tends to zero as n → +∞. In Section 5 we approximate

problem (P̃n) by FEM in space and FD in time and we prove optimal a priori error

estimates. In Section 6 we present the numerical simulations of the problem at hand.

1 Preliminaries

We denote by |P −P0| the Euclidean distance between two points in R3. By the Koch

snowflake K we denote the union of three coplanar Koch curves Ki (see [16]). We point

out that K has Hausdorff dimension df = ln 4
ln 3

We assume that the junction points A1, A3 and A5 are the vertices of a regular triangle

with unit side length, i.e. |A1−A3| = |A1−A5| = |A3−A5| = 1. One can define, in a

natural way, a finite Borel measure µK supported on K by

µK := µ1 + µ2 + µ3

where µi denotes the normalized df -dimensional Hausdorff measure restricted to Ki,

for i = 1, 2, 3.

We denote by Kn the pre-fractal closed polygonal curve approximating K at the n-th

step. We define Sn = Kn × I, with I = [0, 1]; Sn is a surface of polyhedral type. We

give to a point P ∈ Sn the Cartesian coordinates P = (x, x3), where x = (x1, x2) are

the coordinates of the orthogonal projection of P on the plane containing Kn and x3 is

the coordinate of the orthogonal projection of P on the x3-line containing the interval

I.
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By Ωn ⊂ R2 we denote the open bounded two-dimensional domain with boundary Kn.

By Qn = Ωn × I we denote the cylindrical-type domain having Sn as lateral surface

and the sets Ωn × {0} and Ωn × {1} as bases.

The measure on Sn is

dσ = d`× dx3,

where d` is the arc-length measure on Kn (which can be naturally defined) and dx3 is

the one-dimensional Lebesgue measure on I.

We introduce the fractal surface S = K × I given by the Cartesian product between

K and I. On S we can define the finite Borel measure

dg = dµK × dx3.

We remark that S has Hausdorff dimension df + 1.

By Ω ⊂ R2 we denote the two-dimensional fractal domain whose boundary is K. By

Q we denote the open cylindrical domain where S = K × I is the lateral surface and

the sets Ω× {0} and Ω× {1} are the bases, see Figure 1.

We point out that the sequence {Qn} is an increasing sequence invading Q, i.e.

L(Q \Qn) −−−−→
n→+∞

0,

where L is the Lesbegue measure in R3.

Figure 1: The fractal domain Q.

We now recall a trace theorem specialized to our case. For the proof we refer to

Theorem 1 of Chapter VII in [23].

Theorem 1.1. Let Γ denote Ω × {0} and Ω × {1}. Then, for every s > 1
2
, Hs− 1

2 (Γ)

is the trace space of Hs(Q), i.e.:
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1. there exists a linear and continuous operator γ0 : Hs(Q)→ Hs− 1
2 (Γ);

2. there exists a linear and continuous operator Ext: Hs− 1
2 (Γ)→ Hs(Q), such that

γ0 ◦ Ext is the identity operator on Hs− 1
2 (Γ).

Let T be a compact set of RN . By C(T ) we denote the space of continuous functions

on T and by C∞0 (T ) the space of continuous infinitely differentiable functions with

compact support in T .

Let M be an open set of R3. By L2(M) we denote the Lebesgue space with respect

to the Lebesgue measure L. By H1(M) we denote the usual Sobolev space and by

‖ · ‖H1(M) we denote its norm. We set H1
0 (M) = C∞0 (M)

‖·‖H1(M) and we denote by

H−1(M) its dual.

In the following we define H1
0 (Qn) as the closure in H1(Q) of all functions φ ∈ C∞0 (Q)

such that φ = 0 on Q \Qn.

We define L2(M)3 = {u = (u1, u2, u3) : ui ∈ L2(M)} and L2
σ(M) = (C∞0,σ(M))

L2(M)3

,

where C∞0,σ(M) = {v ∈ C∞0 (M)3 : div v = 0}; we endow L2
σ(M) with the L2-scalar

product.

We introduce the space (see [32, page 25]):

C∞0 ([0, T );C∞0,σ(M)) :=
{
u|[0,T )×M : u ∈ C∞0,σ((−1, T )×M)3 , div u = 0

}
.

By H1
0,σ(M) = (C∞0,σ(M))

H1(M)
we denote the closed subspace of H1

0 (M)3.

Moreover the following result holds (see Proposition 2.2. in [28]).

Proposition 1.2. The space H1
0,σ(M) is dense in H1

0 (M)3.

We denote by P : L2(M)3 → L2
σ(M) the Leray-Helmholtz projection and by J the

canonical injection L2
σ(M) ↪→ L2(M)3. We have that the adjoint of J is J ′ = P and that

P ◦ J is the identity on L2
σ(M). The canonical injection J̃ : H1

0,σ(M) ↪→ H1
0 (M)3 is the

restriction of J to H1
0,σ(M). We denote by P̃ the adjoint of J̃ ; since J̃ is the restriction

of J to H1
0,σ(M), P̃ is an extension of P to (H1

0,σ(M))′ (the dual of H1
0,σ(M)). For more

details on the Leray-Helmholtz projection operator see [32, Chapter II, Section 2.5].

2 Existence and uniqueness results

We now recall the main results about the Stokes problem in a pre-fractal domain, see

[27].
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The problem is formally stated as follows:

(P̃n)



∂un
∂t

(t, x)−∆un(t, x) +∇pn(t, x) = fn(t, x) in [0, T ]×Qn,

div un(t, x) = 0 on [0, T ]×Qn,

un(t, x) = 0 on [0, T ]× ∂Qn,

un(0, x) = u0
n(x) in Qn.

We define for every n ∈ N, the bilinear symmetric form an(u,v) : H1
0,σ(Qn) ×

H1
0,σ(Qn)→ R:

an(u,v) =

∫
Qn

∇u · ∇v dL. (2.1)

We note that it is coercive in H1
0,σ(Qn) thanks to Poincaré inequality and it is also

closed in L2
σ(Qn).

By Kato’s theorem [24], there exists a unique non-positive self-adjoint operator

An0 : H1
0,σ(Qn)→ (H1

0,σ(Qn))′ such that

an(u,v) = −〈An0u,v〉(H1
0,σ(Qn))′,H1

0,σ(Qn). (2.2)

Moreover, the following holds (see [28]).

Proposition 2.1. Let ∆: H1
0 (Qn)→ H−1(Qn) denote the Dirichlet Laplacian on Qn.

There holds

An0 = P̃ ◦ (∆)J̃ .

We call the Stokes operator −An the part of −An0 in L2
σ(Qn), i.e. D(An) = {u ∈

H1
0,σ(Qn)) : An0u ∈ L2

σ(Qn)} and Anu = An0u.

Theorem 2.2. The operator An is self-adjoint in L2
σ(Qn) and generates an analytic

contraction semigroup Tn(t) : L2
σ(Qn)→ D(An) with

D(An) = {u ∈ H1
0,σ(Qn) : ∃ p ∈ (D(Qn))′ s.t.∇p ∈ H−1(Qn),−∆u +∇p ∈ L2

σ(Qn)}

and

−Anu = −∆u +∇p ∈ L2
σ(Qn).

Moreover, from [32, Chapter 3, Lemma 2.2.1], there exists a unique positive self-

adjoint operator (−An)
1
2 : D((−An)

1
2 ) → L2

σ(Qn) with domain D((−An)
1
2 ) such that

D(−An) ⊂ D((−An)
1
2 ) ⊂ L2

σ(Qn) and it enjoys the following properties:

D((−An)
1
2 ) = H1

0,σ(Qn) and 〈(−An)
1
2 u, (−An)

1
2 v〉 = 〈∇u,∇v〉.
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We now consider the following abstract Cauchy problem involving the operator An:

(P̄n)


∂un
∂t

= Anun + Pfn in (0, T ),

un(0) = u0
n.

From Theorem 3.8 in [27], the following existence and uniqueness result for the solution

of problem (P̄n) holds.

Theorem 2.3. Let fn ∈ L2(0, T ;L2(Qn)3) and u0
n ∈ D((−An)

1
2 ). For every n ∈ N we

set

un(t) = Tn(t)u0
n +

t∫
0

Tn(t− s)Pfn(s) ds, (2.3)

where Tn(t) is the analytic semigroup generated by An. Then un is the unique mild

solution of (P̄n), i.e.

un ∈ H1(0, T ;L2
σ(Qn))

⋂
L2(0, T ;D(An)),

∂un
∂t

(t) = Anun(t) + Pfn(t) for almost every t ∈ [0, T ] and un(0) = u0
n.

Moreover, there exists a constant C independent from n such that the following inequal-

ity holds:

‖un‖H1(0,T ;L2
σ(Qn)) + ‖un‖L2(0,T ;D(An)) ≤ C‖fn‖L2(0,T ;L2(Qn)3) + ‖u0

n‖D((−An)
1
2 )
. (2.4)

We now prove that the unique mild solution un of the abstract Cauchy problem (P̄n)

is also the unique weak solution of (P̃n). We recall the definition of weak solution and

of associated pressure given in [32, Chapter IV, Definition 2.1.1].

Definition 2.4. Let fn ∈ L2(0, T ;L2(Qn)3) and u0
n ∈ L2

σ(Qn). A function un ∈
L2(0, T ;H1

0,σ(Qn)) is called a weak solution of the Stokes system (P̃n) if and only if

−
T∫

0

∫
Qn

un ·
∂v

∂t
dL dt+

T∫
0

∫
Qn

∇un · ∇v dL dt =

∫
Qn

u0 · v(0) dL+

T∫
0

∫
Qn

fn · v dL dt

for every v ∈ C∞0 ([0, T );C∞0,σ(Qn)). A distribution pn in [0, T ) × Qn is called an

associated pressure of a weak solution un if and only if

∂un
∂t

(t, x)−∆un(t, x) +∇pn(t, x) = fn(t, x)

is satisfied in the sense of distributions.
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Theorem 2.5. For each n ∈ N, if fn ∈ L2(0, T ;L2(Qn)3) and u0
n ∈ L2

σ(Qn), then

the unique mild solution un of problem (P̄n) given by (2.3) is the unique weak solution

of the Stokes system (P̃n) in the sense of Definition 2.4. Moreover, there exists a

unique pressure pn ∈ L2(0, T ;L2(Qn)) associated to the solution un such that, for a.e.

t ∈ [0, T ], ∫
Qn

pn(t, x) dL = 0.

For the proof, see Theorem 3.11 and Section 3.3 in [27].

We now introduce an equivalent weak formulation for (P̃n) in view of the numerical

approximation of the pre-fractal problems by mixed methods, i.e. FEM in space and

finite differences in time. We refer to [30] and [36] for details.

We point out that the space H1
0,σ(Qn) coincides with the space

V := {u ∈ H1
0 (Qn)3 : div u = 0}

for bounded Lipschitz domains (see Lemma 1.2.1, page 111 in [32]). Moreover, from

Lemma 2.5.3, page 82 in [32] we have that L2
σ(Qn) = {u ∈ L2(Qn)3 : div u = 0 , ν ·

u|∂Qn = 0}.
Let un ∈ V be the weak solution of (P̄n). We multiply the first equation in (P̄n) by a

function v ∈ V not depending on time and we integrate on Qn. By using the following

property of the Leray-Helmholtz projection (see Lemma 2.5.2, Chapter II in [32])

(Id− P)f = ∇p,

and integrating by parts, we obtain for a.e. t ∈ [0, T )∫
Qn

∂un
∂t
· v dL+

∫
Qn

∇un · ∇v dL =

∫
Qn

fn · v dL. (2.5)

The existence and uniqueness of the weak solution in V of this problem (which we still

denote by un) follows from [15, Chapter XIX, Section 2].

This functional setting is not convenient for the numerical approximation of (P̃n). In-

deed, it is difficult to find a finite dimensional space of divergence-free vector valued

functions which allows us to find a good convergence behavior of the approximation

error. Moreover, it can be very complicated to construct a basis of this finite dimen-

sional space of divergence-free functions.

We then consider an alternative weak formulation of the Stokes system (P̃n). We
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introduce the space

Q =

v ∈ L2(Qn) :

∫
Qn

v dL = 0

 .

By multiplying the first and the second equations of (P̃n) by a function v ∈ H1
0 (Qn)3

and integrating on Qn, we get the following weak formulation of (P̃n): for a.e. t ∈ [0, T ),

given fn ∈ L2(Qn)3 and u0
n ∈ V , find un ∈ H1

0 (Qn)3 and pn ∈ Q such that

(Pn)



∂

∂t

∫
Qn

un · v dL+

∫
Qn

∇un · ∇v dL −
∫
Qn

pn div v dL =

∫
Qn

fn · v dL ∀v ∈ H1
0 (Qn)3,∫

Qn

q div un dL = 0 ∀ q ∈ Q,

un(0, x) = u0
n(x) on Qn.

(2.6)

We point out that the second equation in (Pn) implies that div un = 0 almost every-

where. Problem (Pn) admits a unique weak solution un ∈ H1
0 (Qn)3 and an associate

pressure pn ∈ Q (see [15, Chapter XIX]). The solution (un, pn) of (2.6) is also a solution

of (2.5) provided that the conditions of [27, Section 3.3] hold. The converse is also true

(see [30, Chapters 10 and 13]).

3 Regularity in weighted Sobolev spaces

We now focus on proving regularity results in weighted Sobolev spaces for the couple

(un, pn), where un is the weak solution of problem (Pn) and pn is its associated pressure.

Such regularity results are needed for the numerical approximation of (Pn); indeed,

since the domain Qn is not convex, we have to construct a suitable triangulation of our

domain for obtaining an optimal rate of convergence of the approximation error. The

construction of the mesh will rely on this weighted Sobolev regularity. We recall that

the interior angles in Qn have opening equal to π
3

or 4
3
π.

Following the notations of [3], for β ∈ R and l ∈ N, we introduce the weighted Sobolev

space V l
β(Qn) of functions for which the following norm is finite:

‖u‖2
V lβ(Qn) :=

∑
|k|≤l

∫
Qn

r2(β−l+|k|)|Dku|2 dL,

where r = r(x) is the distance of x ∈ Qn from the edges.

It is known in literature (see e.g. [29]) that the regularity of the solution of Stokes

problems in polyhedral domains is related to the smallest positive solution λ of the
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following equation:

sin (λω) = −λ sinω, (3.1)

where ω is the opening of the “worst” interior angle at the edge.

We rephrase equation (3.1) in our setting, by recalling that for Qn ω = 4
3
π. Let λ > 0

be the (unique) positive solution of the equation

sin

(
λ

4π

3

)
= λ

√
3

2
; (3.2)

numerically, λ ∼ 0.61572. From Theorem 2.1 in [3] the following result holds.

Theorem 3.1. Let (un, pn) be the solution of (Pn) and its associated pressure. Then for

a.e. t ∈ [0, T ) un ∈ V 2
β (Qn)3, pn ∈ V 1

β (Qn) for every β ∈ (1− λ, 1), ∂x3un ∈ V 1
0 (Qn)3

and ∂x3pn ∈ L2(Qn). Moreover, the following a priori estimate holds:

‖un‖V 2
β (Qn)3 + ‖∂x3un‖V 1

0 (Qn)3 + ‖pn‖V 1
β (Qn) + ‖∂x3pn‖L2(Qn) ≤ C‖fn‖L2(Qn), (3.3)

where C depends on Qn and β.

Moreover, the following regularity result in fractional Sobolev spaces holds. For the

proof, we refer to Proposition 4.15 in [22].

Theorem 3.2. Let (un, pn) be as in Theorem 3.1. Then un ∈ H2−β(Qn)3 and pn ∈
H1−β(Qn) for every β ∈ (1− λ, 1).

4 Mean shear stress

Aim of this section is to prove that the average wall shear stress vanishes along the

fractal boundary. For the sake of simplicity, we will confine ourselves to the stationary

case and we will focus on an isolated system, where the external force contributions

vanish. Under the latter assumption the balance force reads∫
∂Qn

t (n̂) dS = 0, (4.1)

where t is the stress vector depending on the unit-length direction vector n̂. Due

to the Cauchy’s stress theorem, the vector t can be written in terms of a symmetric

second-order tensor field T as t(n̂) = T · n̂, leading to∫
∂Qn

T · n̂ dS = 0. (4.2)
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Since ∂Qn = Sn ∪ (Ωn × {0}) ∪ (Ωn × {1}) the above integral factorizes as∫
Sn

T · n̂ dσ +

∫
Ωn×{0}

T · n̂ dx1dx2 +

∫
Ωn×{1}

T · n̂ dx1dx2 = 0. (4.3)

For Newtonian incompressible fluids, the stress tensor can be written as T = −p1 +

µ(∇u + ∇uT ), where 1 is the identity tensor, p is the hydrodynamic pressure and µ

is the viscosity coefficient. Clearly, in the latter case, the force balance is established

between the viscous forces and the pressure field.

A particularly impressive form of the above balance is obtained when considering a

Hagen-Poiseuille-like flow, where the cylindrical surface Qn has as predominant dimen-

sion the one represented by its axis. Hence, by denoting as u⊥,n the velocity component

aligned with the cylindric axis, and with (x1, x2) the coordinates in a generic section

perpendicular to the axis, the solution un of the Stokes problem and its associated

pressure pn take the simplified form (see e.g. [34])

un = (0, 0, u⊥,n (x1, x2)) , p⊥,n(x3) = pn(0, 0, x3).

We formally define by

〈τw,n〉Kn :=
1

|Kn|

∮
Kn

µ∇u⊥,n · n̂ d`

the “average wall shear stress”. The following result holds.

Theorem 4.1. Let p̃n denote the trivial extension of pn to Q and β ∈ (1− λ, 1
2
). Let

us suppose that there exists a constant M > 0 independent from n such that

‖p̃n(0, 0, x3)‖H1−β(Q) ≤M. (4.4)

Then there exists a positive constant C independent from n such that

|〈τw,n〉Kn| ≤ C
4
4
√

3

(
3

4

)n
|Ω|, (4.5)

hence the average wall shear stress 〈τw,n〉Kn vanishes as n→ +∞.

Proof. Under the above assumptions, the balance in (4.3) takes the form∫
I

dx3

∮
Kn

µ∇u⊥,n · n̂ d`+

∫
Ωn×{0}

p⊥,n(x3) dx1dx2 −
∫

Ωn×{1}

p⊥,n(x3) dx1dx2 = 0.
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From Theorem 3.1 all the above integrals are well defined for the solution un and its

associated pressure pn. By denoting with τw,n = µ∇u⊥,n · n̂ the wall shear stress, since

I = [0, 1], one has ∮
Kn

τw,n d`+ |Ωn|
(
p⊥,n|{x3=0} − p⊥,n|{x3=1}

)
= 0,

where |A| denotes the Lebesgue measure of a subset A ⊂ RN .

By dividing both members of the above equation by |Kn|, we obtain

〈τw,n〉Kn =
1

|Kn|

∮
Kn

τw,n d` = − |Ωn|
|Kn|

(
p⊥,n|{x3=0} − p⊥,n|{x3=1}

)
=

(
3

4

)n
|Ωn|

(
p⊥,n|{x3=1} − p⊥,n|{x3=0}

)
.

(4.6)

Since |Ωn| ≤ |Ω|, from (4.6) we obtain

|〈τw,n〉Kn | ≤
(

3

4

)n
|Ω|
(
|p⊥,n|{x3=1}|+ |p⊥,n|{x3=0}|

)
. (4.7)

We recall that from Theorem 3.2 pn ∈ H1−β(Qn) for every β ∈ (1 − λ, 1); hence

p̃n ∈ H1−β(Q) for every β ∈ (1− λ, 1).

From Sobolev embeddings and the trace Theorem 1.1, we obtain for every β ∈ (1−λ, 1
2
)

that

p⊥,n|{x3=0} =
1

|Ωn|

∫
Ωn×{0}

p⊥,n(x3) dx1dx2 ≤
1

|Ωn|
1
2

‖p⊥,n(x3)‖L2(Ωn×{0}) =
1

|Ωn|
1
2

‖pn(0, 0, x3)‖L2(Ωn×{0})

=
1

|Ωn|
1
2

‖p̃n(0, 0, x3)‖L2(Ω×{0}) ≤
CSob

|Ωn|
1
2

‖p̃n(0, 0, x3)‖
H

1
2−β(Ω×{0})

≤ CSobCTr

|Ωn|
1
2

‖p̃n(0, 0, x3)‖H1−β(Q).

(4.8)

Since the area of Ωn is bigger than the area of the equilateral triangle of vertices A1,

A3 and A5 (see Section 1), which in particular is
√

3
4

, from (4.4), we have that

p⊥,n|{x3=0} ≤ C
2
4
√

3
, (4.9)

where the constant C depends on Q and M but it is independent from n.

We can estimate p⊥,n|{x3=1} in the same way. Hence, from (4.7) we get

|〈τw,n〉Kn| ≤ C
4
4
√

3

(
3

4

)n
|Ω|. (4.10)

Therefore 〈τw,n〉Kn → 0 as n → +∞, thus proving that the average wall shear stress

decreases if we increase the approximation of the pre-fractal n.
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Remark 4.2. In the proof of Theorem 4.9 in [27], it is shown that p̃n is equibounded in

L2(Q). Hence, it seems reasonable to suppose in Theorem 4.1 that ‖p̃n(0, 0, x3)‖H1−β(Q)

is equibounded; indeed, in our case p̃n(0, 0, x3) depends only on the x3 variable, which

takes values in I = [0, 1].

Remark 4.3. It is worth noticing that the hypotheses on the structure of the velocity

and pressure fields (which are physically reasonable in laminar pipe flows) are crucial in

order to enforce the balance between the pressure field and the wall shear stress. Only

in the latter case the stress on Ωn × {0} and Ωn × {1} is fixed by the pressure value,

and viscous contributions vanish. However, laminar pipe flows are present in several

interesting scenery, e.g. blog flow in capillaries and microfluidic devices, making the

theoretical results of potential interest for many practical applications.

5 Numerical approximation

We now consider the numerical approximation of problem (Pn) by FEM in space and

FD in time. We construct an ad hoc mesh which takes into account the singularities

of un in the vertices and in the edges of ∂Qn, in order to obtain an optimal a priori

error estimate.

In [6], the case of two-dimensional pre-fractal domains was studied. By adapting the

results of [6] to the present case, we first construct a mesh of size h for the two-

dimensional domains Ωn, and then following [3], we extend it to the 3D case. We point

out that any mesh generated by applying the proposed algorithm is compliant with

the Grisvard conditions [17].

Let {T} be a regular triangulation of Ωn, µ̃ ∈ [0, 1) be the grading parameter, rT be

the distance of the triangle T from the re-entrant corner of opening 4π
3

, i.e.

rT = inf
(x1,x2)∈T

√
x2

1 + x2
2,

and hT be the diameter of T . We assume that

hT ≤


λ̃h

1
1−µ̃ for rT = 0,

λ̃hrµ̃T for 0 < rT ≤ R,

λ̃h for rT > R,

for some constant R > 0, where λ̃ is the regularity constant of the mesh.

We now extend this two-dimensional mesh in the third dimension by using a uniform

mesh size h. Let {E} be an element of the three-dimensional mesh obtained in such

13



way; we denote by rE the distance of E from the edges and by h1,E the length of the

projection of E on the x1 axis (analogously, we define h2,E and h3,E). Then the element

sizes satisfy the following:

h1,E, h2,E ≤


λ̃h

1
1−µ̃ for rE = 0,

λ̃hrµ̃E for 0 < rE ≤ R,

λ̃h for rE > R,

h3,E ≤ λ̃h.

We denote by Tn,h = {E} the three-dimensional mesh obtained in this way and by F

the faces of the elements. We point out that following this construction we obtain either

a pentahedral or a tetrahedral triangulation. In view of the numerical simulations, we

choose the pentahedral one, but the results of this section hold also for tetrahedral

meshes. The mesh obtained by using this procedure is shown in Figure 2.

Figure 2: The mesh of Qn, for n = 2.

We now discretize problem (Pn) in space first. Let P1 denote the space of polynomial

functions of degree one. We denote by Xn,h the finite element space

Xn,h =

v ∈ L2(Qn)3 : v|E ∈ (P1 ⊕ span{x2
3})3 ∀E ∈ Tn,h and

∫
F

[v] = 0∀F

 ,

where [v] denotes the jump of v on the faces F ; for boundary faces [v] is identified

with v.
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We denote by Mn,h the subspace of piecewise constant functions

Mn,h =

q ∈ L2(Qn) : q|E ∈ P0 ∀E ∈ Tn,h and

∫
Qn

q = 0

 .

We point out that Xn,h * H1
0 (Qn)3. Moreover, we equip Xn,h with the following norm:

‖u‖2
Xn,h

:=
∑
E

∫
E

∇u · ∇u dL.

We denote by In,h the Crouzeix-Raviart interpolant polynomial (see [14])

In,h : H1
0 (Qn)3 → Xn,h defined elementwise by∫

F

u dS =

∫
F

In,hu dS ∀F ⊂ ∂E, ∀E ∈ Tn,h.

In [2] it is proved that In,h is well defined. Moreover, it is stable in H1
0 (Qn)3, i.e.∫

E

∇(In,hu) dL ≤ C

∫
E

∇u dL ∀E ∈ Tn,h.

If un = (u1,n, u2,n, u3,n) is the solution of (Pn), from (3.3) and Theorem 5.1 in [2] we

obtain that

‖ui,n − In,hui,n‖Xn,h ≤ Ch‖fn‖L2(Qn)3 .

We now introduce the following mean value operator:

Mh,E p =
1

meas(E)

∫
E

p dL.

We set Mhp(x) := Mh,Ep(x) if x ∈ E. By proceeding as in [3], if pn is the pressure

associated to the solution un of (Pn), from (3.3) we have that

‖pn −Mh pn‖L2(Qn) ≤ Ch‖fn‖L2(Qn)3 .

The semi-discrete approximation problem reads as follows: given u0
n,h ∈ Xn,h, for a.e.

t ∈ [0, T ) find un,h ∈ Xn,h and pn,h ∈Mn,h such that

(Pn,h)



∂

∂t
(un,h,vh)L2(Qn) + an(un,h,vn,h)− (pn,h, div vh)L2(Qn) = (fn,vh)L2(Qn) ∀vh ∈ Xn,h,

(qh, div un,h)L2(Qn) = 0 ∀ qh ∈Mn,h,

un,h(0) = u0
n,h.

(5.1)
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Problem (Pn,h) is a system of ordinary differential equations. It admits a unique weak

solution given by the couple (un,h, pn,h), see e.g. [15].

From Lemma 3.1 in [3], we have that the following inf-sup condition holds: for every

qh ∈Mn,h there exists a function vh ∈ Xn,h, with vh 6= 0, such that

(qh, div vh)L2(Qn) ≥ C‖qh‖L2(Qn)‖vh‖Xn,h , (5.2)

where C is a constant depending on Qn and independent from h.

Using the above results, we obtain the following optimal a priori error estimate (see

Theorem 3.1 in [3]).

Theorem 5.1. Let (un, pn) be the solution of problem (Pn) and its associated pressure

respectively. Let (un,h, pn,h) be the semi-discrete solution of problem (Pn,h). If the

grading parameter of the mesh µ̃ is such that µ̃ < λ, where λ is given by (3.2), then

for a.e. t ∈ [0, T ) the following estimate holds with a constant C1 independent from h:

‖un − un,h‖Xn,h + ‖pn − pn,h‖L2(Qn) ≤ ‖u0
n − u0

n,h‖Xn,h + C1h‖fn‖L2(Qn)3 . (5.3)

We now approximate problem (Pn,h) in time by using the implicit Euler method. From

now on we suppose that
∂fn
∂t
∈ L2(Qn)3.

Let ∆t = T
N

be the time step size, for some integer N , and let tl = l∆t, for l =

0, 1, . . . , N . We set

Vn,h :=

vh ∈ Xn,h :

∫
Qn

qh div vh dL = 0 ∀ qh ∈Mn,h

 .

Let Pn,h : L2(Qn)3 → Vn,h be the orthogonal projection. We define An,h := −Pn,h∆
the discrete version of the Stokes operator. Since the restriction of An,h to Vn,h is

invertible, and its inverse A−1
n,h is positive and self-adjoint, we can define the following

discrete norms for r ∈ R and vh ∈ Vn,h:

‖vh‖r := ‖A
r
2
n,hvh‖L2(Qn)3 .

We point out that the following hold:

‖vh‖0 = ‖vh‖L2(Qn)3 , ‖vh‖1 = ‖vh‖Xn,h , ‖vh‖2 = ‖An,hvh‖L2(Qn)3 .
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The fully discretized problem reads as follows: setting ul=0
n,h = un,h(0), find uln,h ∈ Xn,h

and pln,h ∈Mn,h such that

(P l
n,h)


(uln,h − ul−1

n,h ,vh)L2(Qn)

∆t
+ an(uln,h,vh)− (pln,h, div vh)L2(Qn) = (fn(tl),vh)L2(Qn) ∀vh ∈ Xn,h,

(qh, div uln,h)L2(Qn) = 0 ∀ qh ∈Mn,h.

(5.4)

We adapt the results of [18] to our case; for the case of Crank-Nicolson, we refer to

[19]. From now on, we set

dtw
l
n,h =

wl
n,h −wl−1

n,h

∆t
.

Theorem 5.2 (Stability). The fully discretized solution uln,h of (P l
n,h) satisfies the

following estimate for every m = 0, . . . , N :

‖umn,h‖2
Xn,h

+ ∆t
m∑
l=1

‖uln,h‖2
2 ≤ ‖u0

n,h‖2
Xn,h

+ C sup
t∈[0,T ]

‖fn(t)‖2
L2(Qn)3 , (5.5)

where C depends on T and it is independent from ∆t, N and h.

Proof. We take vh = 2∆tAn,hu
l
n,h as test function in the first equation of (P l

n,h). By

using vectorial identities and the properties of An,h, we have

‖uln,h‖2
1 − ‖ul−1

n,h‖
2
1 + ∆t2‖dtuln,h‖2

1 + 2∆t‖An,huln,h‖2
L2(Qn)3 = 2∆t(fn(tl), An,hu

l
n,h)L2(Qn).

(5.6)

From Cauchy-Schwarz and Young inequalities it follows that

‖uln,h‖2
1 − ‖ul−1

n,h‖
2
1 + ∆t‖An,huln,h‖2

L2(Qn)3 ≤ ∆t‖fn(tl)‖2
L2(Qn)3 . (5.7)

By summing on l from 1 to m and taking the supremum for t ∈ [0, T ] on the right-hand

side we get the thesis.

We set σ(t) = min{1, t}, eln,h := uln,h − un,h(tl) and ηln,h := pln,h − pn,h(tl) for every

l = 1, . . . , N . By calculating (Pn,h) in t = tl and by subtracting it to (P l
n,h) we get

(dte
l
n,h,vh)L2(Qn) + an(eln,h,vn,h)− (ηln,h, div vh)L2(Qn) = (El

n,h,vh)L2(Qn) ∀vh ∈ Xn,h,

(qh, div eln,h)L2(Qn) = 0 ∀ qh ∈Mn,h,

(5.8)

where the “residual term” El
n,h is defined as follows:

(El
n,h,vh)L2(Qn) :=

1

∆t

tl∫
tl−1

(t− tl−1)

(
∂2un,h(t)

∂t2
,vh

)
L2(Qn)

dt. (5.9)
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We recall an a priori estimate for the semi-discrete solution un,h of (Pn,h). For the

proof, we refer to Proposition 3.2 in [19].

Proposition 5.3. Let un,h be the solution of (Pn,h). Let us suppose that∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3
≤ C̃,

where C̃ is independent from n and h. Then

2∑
r=0

σr(t)

∥∥∥∥∂un,h
∂t

∥∥∥∥2

r

≤ C

‖un,h(0)‖2
Xn,h

+

t∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds

 .

We prove some preliminary lemmas. For the sake of completeness, we give sketches of

the proofs.

Lemma 5.4. Let us suppose that∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3
+

∥∥∥∥∂2fn
∂t2

∥∥∥∥2

L2(Qn)3
≤ C̃,

where C̃ is independent from n and h. Under the assumptions of Theorem 5.2, the
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residual term El
n,h satisfies the following estimates:

∆t
m∑
l=1

‖A−1
n,hPn,hE

l
n,h‖2

L2(Qn)3 ≤ C∆t2

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds

 ,

(5.10)

∆t
m∑
l=1

‖A−
1
2

n,hPn,hE
l
n,h‖2

L2(Qn)3 ≤ C∆t

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds

 ,

(5.11)

∆t
m∑
l=1

σ(tl)‖A
− 1

2
n,hPn,hE

l
n,h‖2

L2(Qn)3 ≤ C∆t2

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds

 ,

(5.12)

σ3(tm)‖Em
n,h‖2

L2(Qn)3 + ∆t
m∑
l=2

σ2(tl)‖El
n,h‖2

L2(Qn)3 ≤ C∆t2‖un,h(0)‖2
Xn,h

+ C∆t2
T∫

0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds, m = 2, . . . , N, (5.13)

∆t
m∑
l=3

σ3(tl)‖A
− 1

2
n,hPn,hdtE

l
n,h‖2

L2(Qn)3 ≤ C∆t2‖un,h(0)‖2
Xn,h

+ C∆t2
T∫

0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3
+

∥∥∥∥∂2fn
∂t2

∥∥∥∥2

L2(Qn)3

)
ds, m = 3, . . . , N.

(5.14)

For the proof we refer to [18, Lemma 6.1] with small suitable changes.

Lemma 5.5. Under the assumptions of Lemma 5.4, the following inequality holds for

every m = 1, . . . , N :

‖emn,h‖2
L2(Qn)3 + ∆t

m∑
l=1

(
∆t‖dteln,h‖2

L2(Qn)3 + ‖eln,h‖2
1

)
≤ C∆t‖un,h(0)‖2

Xn,h

+ C∆t

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds.

(5.15)
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Proof. By taking vh = 2eln,h∆t as test function in (5.8), noting that this function

belongs to Vn,h and using Cauchy-Schwarz and Young inequalities, we get

‖eln,h‖2
L2(Qn)3−‖el−1

n,h‖
2
L2(Qn)3+∆t2‖dteln,h‖2

L2(Qn)3+c∆t‖emn,h‖2
1 ≤ C∆t‖A−

1
2

n,hPn,hE
l
n,h‖2

L2(Qn)3 .

(5.16)

By summing from 1 to N and using (5.11), we get the thesis.

Lemma 5.6. Under the assumptions of Lemma 5.4, the following inequality holds for

every m = 1, . . . , N :

σ(tm)‖emn,h‖2
L2(Qn)3 + c∆t

m∑
l=1

σ(tl)‖eln,h‖2
1 ≤ C∆t2‖un,h(0)‖2

Xn,h

+ C∆t2
T∫

0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds.

(5.17)

Proof. By multiplying (5.16) by σ(tl) and summing on l from 1 to m we get

σ(tm)‖emn,h‖2
L2(Qn)3 + c∆t

m∑
l=1

σ(tl)‖eln,h‖2
1 ≤ C∆t

m∑
l=1

σ(tl)‖A
− 1

2
n,hPn,hE

l
n,h‖2

L2(Qn)3 .

From (5.12) we get the thesis.

Lemma 5.7. Under the assumptions of Lemma 5.4, the following inequality holds for

every m = 1, . . . , N :

σ2(tm)‖emn,h‖2
1 + c∆t

m∑
l=2

σ2(tl)‖An,heln,h‖2
L2(Qn)3 ≤ C∆t2‖un,h(0)‖2

Xn,h

+ C∆t2
T∫

0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds.

(5.18)

Proof. By taking vh = 2An,he
l
n,h∆t as test function in (5.8), noting that this function

belongs to Vn,h and using Cauchy-Schwarz and Young inequalities, we get

‖eln,h‖2
1 − ‖el−1

n,h‖
2
1 + ∆t2‖dteln,h‖2

1 + c∆t‖An,heln,h‖2
L2(Qn)3 ≤ C∆t‖El

n,h‖2
L2(Qn)3 .

By multiplying the above inequality by σ2(tl), summing on l from 2 to m and using

(5.13) we get the thesis.
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By combining (5.17) and (5.18) we obtain the following error estimates for the veloci-

ties: for tl ∈ (0, T )

σ(tl)‖eln,h‖2
L2(Qn)3+σ

2(tl)‖eln,h‖2
Xn,h
≤ C2∆t2

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds

 .

(5.19)

where C2 is independent from t and ∆t.

We now focus on obtaining the error estimate for the pressure term ηln,h.

Theorem 5.8. Under the assumptions of Lemma 5.4, for l = 1, . . . , N we have that

σ3(tl)‖ηln,h‖2
L2(Qn) ≤ C∆t2

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3
+

∥∥∥∥∂2fn
∂t2

∥∥∥∥2

L2(Qn)3

)
ds

 .

(5.20)

Proof. Taking vh ∈ Vn,h, from (5.8) it follows that

(dtte
l
n,h,vh)L2(Qn) + an(dte

l
n,h,vn,h) = (dtE

l
n,h,vh)L2(Qn).

Setting vh = 2∆tdte
l
n,h in the above equation, it follows that

‖dteln,h‖2
L2(Qn)3 − ‖dtel−1

n,h‖
2
L2(Qn)3 + c∆t‖dteln,h‖2

1 ≤ C∆t‖A−
1
2

n,hPn,hdtE
l
n,h‖2

L2(Qn)3 .

Multiplying the above inequality by σ3(tl), summing on l from 3 to m and using (5.14)

we get

σ3(tm)‖dtemn,h‖2
L2(Qn)3 ≤ C∆t2

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3
+

∥∥∥∥∂2fn
∂t2

∥∥∥∥2

L2(Qn)3

)
ds

 .

(5.21)

We now estimate the residual term E1
n,h. From direct calculations it follows that

‖E1
n,h‖L2(Qn)3 ≤

∥∥∥∥∂un,h(t1)

∂t

∥∥∥∥
L2(Qn)3

+
1√
∆t

 t1∫
t0

∥∥∥∥∂un,h(t)

∂t

∥∥∥∥2

L2(Qn)3
dt


1
2

.

Multiplying the above inequality by σ3(t1), since σ(t1) ≤ ∆t, we get

σ3(t1)‖E1
n,h‖2

L2(Qn)3 ≤ σ3(t1)

∥∥∥∥∂un,h(t1)

∂t

∥∥∥∥2

L2(Qn)3
+ σ2(t1)

t1∫
t0

∥∥∥∥∂un,h(t)

∂t

∥∥∥∥2

L2(Qn)3
dt.
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Since σ2(t1) ≤ ∆t2, from Proposition 5.3 we obtain

σ3(t1)‖E1
n,h‖2

L2(Qn)3 ≤ C∆t2

‖un,h(0)‖2
Xn,h

+

T∫
0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3

)
ds

 .

(5.22)

Now, from (5.8), (5.2) and Cauchy Schwarz inequality, we get

σ3(tl)‖ηln,h‖2
L2(Qn) ≤ σ3(tl)‖dteln,h‖2

L2(Qn)3 + σ2(tl)‖eln,h‖2
1 + σ3(tl)‖El

n,h‖2
L2(Qn)3 .

From (5.21), (5.18), (5.13) and (5.22) we get the thesis.

From (5.19), (5.20) and (5.3), the following optimal a priori error estimate follows.

Theorem 5.9. Let n be fixed. Let (un(t), pn(t)) be the solution of problem (Pn) and its

associated pressure respectively, and let (uln,h, p
l
n,h) be the fully discretized solution of

(P l
n,h) and its associated pressure respectively. Then for every l = 0, 1, . . . , N we have

σ2(tl)‖un(tl)− uln,h‖2
Xn,h

+ σ3(tl)‖pn(tl)− pln,h‖2
L2(Qn) ≤ ‖u0

n − u0
n,h‖2

Xn,h

+ C1 h
2‖fn‖2

L2(Qn)3 + C2 ∆t2
T∫

0

(
‖fn‖2

L2(Qn)3 +

∥∥∥∥∂fn
∂t

∥∥∥∥2

L2(Qn)3
+

∥∥∥∥∂2fn
∂t2

∥∥∥∥2

L2(Qn)3

)
ds.

6 Numerical simulations

In this section we present two numerical experiments on Stokes flows. We first consider

a time-dependent problem, where a quiescent viscous fluid enclosed in a Koch-type pre-

fractal pipe is accelerated by an external field. Secondly, we study stationary Stokes

equations, and we aim to numerically validate the theoretical results on the mean

shear stress along a fractal boundary, according to Section 4. The simulations have

been performed on Comsol V.3.5, on a notebook computer with a Intel quad-Core

i5-8250U processor running at 1.60 GHz and equipped with 16 GB RAM.

As to the time dependent problem, we fix n = 3 and we consider problem (Pn) as

follows:

(Pn)


ρ∂un
∂t

(t, x)− µ∆un(t, x) +∇pn(t, x) = fn(t, x) in [0, T ]×Qn,

div un(t, x) = 0 on [0, T ]×Qn,

un(t, x) = 0 on [0, T ]× ∂Qn,

un(0, x) = u0
n(x) in Qn,
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where in this section Qn = Ωn × [0, 2], ρ = 1, µ = 0.1, fn =
(
0, 0, sin(πx1

√
3)
)
, T = 1,

∆t = 0.01 and u0
n(x) = 0.

The behavior of the third component of the velocity field for different time steps in the

transient dynamic is described in Figure 3. Since the external force is directed as the x3

axis, far from the planes x3 = 0 and x3 = 2 (representing the inlet and the outlet of the

fractal pipe) the relevant component of the velocity field is the one aligned in the same

direction. On the other hand, in proximity of the bases (Ωn × {0}) ∪ (Ωn × {2}), the

velocity component u1,n starts increasing due to the boundary condition un(t, x) = 0

on ∂Qn. Thus the resulting motion is represented by an evolving vortex having as axis

x2.

Due to the dissipative nature of the Stokes operator, the velocity field quickly converges

towards a stationary solution, as shown in the last panel of Figure 3. In this case the

fluid is quite “trapped” in the green areas of the domain as in Figure 3.

As shown in Section 4, fractal-type boundaries can be useful in Hagen-Poiseuille-like

flows, because they enhance the reduction of the mean shear stress exerted by the fluid

onto the wall.

More precisely, in Hagen-Poiseuille-like flows, the equations of motion are represented

by the stationary Stokes equations, where a pressure difference [pn] := p⊥,n|{x3=0} −
p⊥,n|{x3=2} is imposed on the bases Ωn×{0} and Ωn×{2}. In the stationary case, the

pressure drop is balanced by the viscous shear stress exerted on the boundary. Due

to the constant cross section, and the pressure condition on the bases, the resulting

motion is unidirectional (hence it can be visualized in a generic section of the fractal

pipe), and it is mathematically described by a scalar Poisson problem for the Laplace

operator with homogeneous Dirichlet boundary conditions for the velocity component

u3,n. The values of u3,n in a cross section of the pipe are reported in Figure 4. The

different snapshots refer to different values of the parameter n.

It turns out that the maximum value of the velocity field is almost constant at each

iteration. The specific form of the velocity profile is slightly influenced by the parameter

n and, as in the previous numerical example, a “quiescence zone”is detected towards

the “trapping blue areas”.

Looking at the mean value of the viscous shear stress (Table 1), we notice that 〈τw,n〉
decreases as n increases, according to Theorem 4.1.

Figure 5 shows the average wall shear stress data collected in Table 1. One may observe

the exponential decay given by Theorem 4.1 (more precisely, in accordance with the

curve y = 0.22
(

3
4

)n
). The reader may notice that the first two numerical values of

Table 1 does not perfectly match with the exponential curve; this is due to numerical

integration errors which are larger for coarse meshes, i.e. n = 1, 2.
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Figure 3: Time evolution of the velocity component u3,n. The time sequence from the

top (left panel) is referring to the time steps t = 0.05, t = 0.15, t = 0.50 and t = 1.00.
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Figure 4: Snapshots of the velocity component u3,n for n = 1, 3, 5, 7.

n 〈τw,n〉
1 0,143352

2 0,118425

3 0,09157

4 0,069939

5 0,05179

6 0,038986

7 0,028286

Table 1: The values of the mean wall shear stress obtained in our simulations.
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